الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية العقيد أعمر أوعمران – فريقات السنة الدراسية: 2024/2023

وزارة التربية الوطنية مديرية التربية لولاية تيزى وزو

التاريخ: 03 ديسمبر 2023

المدة: 3 ساعات و نصف

إختبار الثلاثي الأول في مادة الرياضيات

المستوى : 3 رياضي

التمرين الأول: (6 نقاط)

لكل سؤال جواب واحد فقط صحيح من بين الأجوبة الثلاثة المقترحة ، عينه مع التعليل :

: هي \mathbb{R} في \mathbb{R} د $+e^{2x} < 5e^x$ عي . 1

 $S =]-\infty; \ln 2[\cup] \ln 3; +\infty[(\pi$

S =]2; 3[($= S =]\ln 2; \ln 3[$

د. مجموعة حلول المتراجحة $\ln[\ln(\ln x)] > 0$ هي:

 $S =]e^3; +\infty [$ (ε

 $S =]e^e; +\infty[$ (\smile

 $S =]e; +\infty [$

د. الدالة العددية f المعرفة على \mathbb{R} بـ : \mathbb{R} من $f(x) = \ln(x + \sqrt{x^2 + 1})$ ، من أجل كل x من x

 $f(-x) = -f(x) \ (\pi$

f(-x) = f(x) (\smile

f(1-x) = f(x)

: الدينا x من أجل كل x من أجل كل y+y'=0 هو الحل الخاص للمعادلة التفاضلية y+y+y'=0 حيث y+y+y'=0

 $g(x) = e^x - 2 \ (\pi$

 $g(x) = -1 + 2e^{-x}$ ($g(x) = -1 - 2e^{-x}$ ()

: حيث $h(x) = \frac{1}{\ln x} + \ln(\ln x)$ على 0 = 1 حيث $h(x) = \frac{1}{\ln x} + \ln(\ln x)$ على 0 = 1

 $h'(x) = \frac{-1 + \ln x}{x \ln^2 x}$ (5

 $h'(x) = \frac{1 - \ln x}{r \ln^2 x}$ (\dot{y} $h'(x) = \frac{1 - \ln x}{r^2 \ln^2 x}$ (\dot{y}

: الدالة المعرفة على x بـ \mathbb{R} بـ x الدالة المعرفة على x بـ \mathbb{R} بـ x الدالة المعرفة على x الدالة المعرفة على x بـ الدالة المعرفة على x بـ الدينا عدد حقيقي x الدينا المعرفة على x بـ الدينا المعرفة على x المدالة المعرفة على x الدينا المعرفة على x الدينا المعرفة على x الدينا المعرفة على x الدينا المعرفة على x المدالة المعرفة على x الدينا المعرفة على x الدينا المعرفة على x الدينا المعرفة على x الدينا المعرفة على x المدالة ال

 $k(-x) + k(x) = x \sin x$ (

k(-x) - k(x) = 0 (k(-x) + k(x) = 0

التمرين الثاني: (7 نقاط)

- $g(x)=x^2+2\ln x$: بالدالة العددية المعرفة على] $0;+\infty$ بالدالة العددية المعرفة على]. g
 - 1) أدرس تغيرات الدالة g و شكل جدول تغيراتها .
- 0.75 < lpha < 0.76 : يين أن المعادلة g(x) = 0 تقبل حلا وحيدا lpha في g(x) = 0 ثم تحقق أن g(x) = 0
 - $\cdot g(x)$ استنتج حسب قیم x إشارة (3
- الدالة العددية المعرفة على $f_k(x) = 1 x + \frac{k}{x}(1 + \ln x)$: الدالة العددية المعرفة على $f_k(x) = 0$; المستوي المنسوب إلى معلم متعامد و متجانس $f_k(x) = 0$; $f_k(x)$. II و ليكن $f_k(x) = 0$. $f_k(x) = 0$.

الجزء الأول :

- . بين أن كل المنحنيات (C_k) تمر من نقطة ثابتة يطلب تعيينها (1
- ، (k عند $\infty+$ و 0) أحسب نهايتي الدالة f_k عند $\infty+$ عند $\infty+$

الجزء الثانى :

$$f(x) = 1 - x + \frac{2}{x} (1 + \ln x)$$
 : غذ $k = 2$

- $\lim_{x \to +\infty} f(x)$ أحسب و فسر النتيجة هندسيا ، ثم أحسب النتيجة $\lim_{x \to +\infty} f(x)$ و فسر النتيجة النتيج
- (C_f) أ بين أن المستقيم (Δ) ذو المعادلة y=-x+1 مستقيم مقارب مائل لـ (α) أ بين أن المستقيم (α) بالنسبة إلى (α) بالنسبة إلى (α)
 - $f'(x) = \frac{-g(x)}{x^2} : x$ عدد حقیقی عدد عنب أنه من أجل كل عدد عنبي (3 . استنتج اتجاه تغیر الدالة f ثم شكل جدول تغیراتها .
 - f(lpha) بين أن $f(lpha)=1-2lpha+rac{2}{lpha}$ بين أن بين أن f(lpha)=1
 - ٠ بين أن المنحنى (C_f) يقبل مماسا (T) يوازي (Δ) يطلب تعيين معادلة له
 - 6) بين أن المنحنى (C_f) يقطع حامل محور الفواصل في نقطتين فاصلتاهما :

$$2,50 < \beta < 2,55$$
 , $0,31 < \alpha' < 0,33$

 (Δ) أ – أرسم (C_f) ، (C_f) و (7)

 $\frac{2}{x} \ (1+\ln x) = m-1$: عدد و إشارة حلول المعادلة m-1 : اقش بيانيا حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة $k(x) = -|1-x| + \frac{2}{x} \ (1+|\ln x|)$. m = 10 بعتبر الدالة m = 10 المعرفة على m = 10 بعتبر الدالة m = 10

أ – أكتب الدالة k دون رمن القيمة المطلقة .

ب - أدرس قابلية إشتقاق الدالة k عند x=1 ، و فسر النتائج هندسيا .

التمرين الثالث: (7 نقاط)

y=-3x+1 هو التمثيل البياني للدالة المعرفة على \mathbb{R} بـ : e^x-x^2 ، \mathbb{R} المستقيم ذو المعادلة C ،I

$$g(x)=e^x-x^2+3x-1:$$
 بنظر الشكل المقابل) و g الدالة المعرفة على \mathbb{R} بـ (أنظر الشكل المقابل)

. \mathbb{R} على \mathbb{R} . \mathbb{R} على النسبة لـ D على المراءة بيانية حدد وضعية المراءة بيانية عدد المراءة المرا

 $\cdot g(x)$ ب استنتج حسب قیم x إشارة

2) ناقش بيانيا حسب قيم الوسيط الحقيقي عدد و إشارة حلول المعادلة:

$$e^x - \ln m = x^2$$

 $f(x)=(x^2-x)e^{-x}+x$ يا الدالة المعرفة على $\mathbb R$ بـ: f هي الدالة المعرفة على الدالة المعرفة على الدالة المعرفة على بـ:

و ليكن
$$(C_f)$$
 تمثيلها البياني في المستوي المنسوب إلى معلم

متعامد و متجانس $(0; \vec{\imath}; \vec{j})$

$$\lim_{x \to -\infty} f(x) = +\infty$$
و $\lim_{x \to +\infty} f(x) = +\infty$ (1) بین أن

. أحسب $\lim_{x\to +\infty} [f(x)-x]$ ، ثم فسر النتيجة هندسيا (2

(
$$\Delta$$
): $y=x$ و المستقيم النسبي للمنحنى (C_f) و المستقيم -

 $f'(x)=e^{-x}\;g(x)$: فإن $\mathbb R$ من 1 ها فإن (3

ب - استنتج اتجاه تغیر الدالة f ثم شكل جدول تغیراتها .

$$f''(x) = [g'(x) - g(x)] e^{-x} : \mathbb{R}$$
 من $f''(x) = [g'(x) - g(x)] e^{-x}$ (4

ب - استنتج أن المنحنى (C_f) يقبل نقطتي انعطاف يطلب تعيينهما -

 (C_f) أنشئ المنحنى (C_f) و المستقيم

$$h(x)=(1-e^x)x-x^2e^x$$
ب. بالدالة المعرفة على $\mathbb R$ بالدالة المعرفة على $h(x)$

- اشرح كيفية رسم (C_h) منحنى الدالة h انطلاقا من (C_f) ثم أرسمه في المعلم السابق -

$$k(x)=e^{f(x)}$$
 : بالدالة المعرفة على $\mathbb R$ بالدالة المعرفة على k

- اعتمادا على تغيرات الدالة f ، أدرس تغيرات الدالة k و شكل جدول تغيراتها (عبارة k(x) غير مطلوبة)

