الحجتبائ الثَّالْاثْرَالِافَّ لَن فِي مَا لَّى قِ الرِّيَّاضِيًّا مِنْ

المُدّة: ساعتان

لستوى: ثالثة ثانوي علوم تجريبية

التّمريين الأوّل: ﴿ ﴿ وَالْ

 $:h(x)=\frac{3}{\sqrt{6-x^2}}:$ نعتبر الدالة h المعرفة محلى المجال $[0;\sqrt{6}]$ با

. $\lceil 0; \sqrt{6} \rceil$ ادرسه اتجاه نغیر الدالة h على المجال -1

 $u_{n+1} = \frac{3}{\sqrt{6-u_n^2}}$: n و هنه اجل لك محدد طبيعي $u_0 = 0$ و هنه اجل لك محدد طبيعي المجال المعرفة محلى المجال المعرفة بحدها الأول $u_0 = 0$

- . أحسب u_1 و تقاليها و تقاليها -1 أحسب أ u_2 و u_3 و تقاليها -1
 - $0 \le u_n < \sqrt{3}$ ابرها من أجل كل محدد طبيعي n أن -2

 $l = \sqrt{3}$: فأه اذا كانت المتتالية (u_n) متقاربة نحو l فأه

ب برهه أن المتتالية (u_n) متنايدة.

- چ) استنتخ اه المتتالية $(u_{_n})$ متقابرة و أحسب نهايتها.
- $v_n = \frac{u_n^2}{3 u_n^2}$: المعرفة على المجال $[0; +\infty[$ المعرفة على المجال (V_n) المعرفة على المجال -3

أ) برهه أن المتتالية (V_n) متتالية حسابية أساسها r=1 يطلب عبارة حدها العام.

 (u_n) فيالة الله المية (من n ما المتالية المتالية u_n بكثار (ب

التمرين الثانس 🥮

 $f(x) = \frac{1}{x} + \frac{1}{\ln x}$ با نعتبر الدالة $f(x) = \frac{1}{x} + \frac{1}{\ln x}$ با نعتبر الدالة $f(x) = \frac{1}{x} + \frac{1}{\ln x}$ با نعتبر الدالة والمعرفة محلى المجال

 $\left(c,ec{i},ec{j}
ight)$ التمثيل البياني للدالة f في المستوي المنسوب إلى معلم متعامد متجانس $\left(C_{f}
ight)$

النتائع هندسيا و فسر النتائع هندسيا f(x) و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب -1

 $f'(x) = -\frac{1}{x^2} - \frac{1}{x(\ln x)^2}$: وا به $f'(x) = -\frac{1}{x^2} - \frac{1}{x(\ln x)^2}$ وا به $f'(x) = -\frac{1}{x^2} - \frac{1}{x(\ln x)^2}$ وا به الدالة $f'(x) = -\frac{1}{x^2} - \frac{1}{x(\ln x)^2}$ وا به الدالة $f'(x) = -\frac{1}{x^2} - \frac{1}{x(\ln x)^2}$ وا به الدالة الدشتقاق على المجال $f'(x) = -\frac{1}{x^2} - \frac{1}{x(\ln x)^2}$

f مُلك جدول تغييات الدالة -3

 $0.56 \le lpha \le 0.57$ يقطة حامل محور الفواصل في نقطة وحيرة فاصلتها lpha حيث (C_f) يقطة حامل محور الفواصل في نقطة وحيرة فاصلتها (C_f)

 $.(C_f)$ awl -5

f(x) = f(m) ناقش حسب قيق الوسيط الحقيقي m محد و إشارة حلول المعادلة -6

 $g(x) = 2f(x^2)$: يا $[1;+\infty]$ المعرفة على المجالة g المعرفة على المجالة المعرفة على المجالة المعرفة على المجالة المعرفة على المجالة المعرفة على ا

 $\left(o,ec{i},ec{j}
ight)$ التمثيل البياني للدالة g في المستوي المنسوب إلى معلم متعامد متجانس $\left(C_{g}
ight)$

- $f(x) g(x) = \frac{1}{x} \frac{2}{x^2}$: مينه انه منه اجل كل محد حقيقي x منه المجال x = 1; +∞[فاه x = 1
 - .] $1;+\infty$ [ادسه الوضح النسبي لله منه المنخنيية $\left(C_{g}
 ight)$ على المجال -2
- ل قله $X\in[2;+\infty[$ منه المنحنيية منه المنحنيية $(C_g)(C_f)$ على الترتيب فاصلتيهما $X\in[2;+\infty[$ منه الجل أي قيمة ل N منه الجل أي قيمة ل N حتى تكون المسافة N كتب ما يمكنه .

جالة وفيق والنجاح والاستعداد الشهادة البكالوليا الساتذة المادة

Tell Me and I Forget; Teach Me and I May Remember; Involve Me and I Learn