الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية صالح بوجنانة - بوحاتم -

دورة: ماي 2024 .

مديرية التربية لولاية ميلة امتحان البكالوريا التجريبي

الشعبة: علوم تجريبية

المدّة: 03 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

-4; 3 مريات حمراء تحمل الأرقام 3 +1; 0 و ثلاث كريات حمراء تحمل الأرقام 3 +1; 0 و ثلاث كريات حمراء تحمل الأرقام 3 و0 . وكريتين خضراء تحملان الرقمين 4 ; 0 . الكريات كلها متماثلة ولانفرق بينها عند اللمس .نسحب عشوائيا وفي آن واحد ثلاث كريات من الصندوق.

1) أحسب احتمال كل حدث من الأحداث التالية:

A: " الحصول على ثلاث كريات مختلفة اللون " B: " الحصول على ثلاث كريات مجموع أرقامها معدوم "

. $\overline{A} \cap B$: أ . أحسب احتمال الحادثة

 $\frac{19}{120}$ هو $\overline{A} \cup B$ ، هو الحادثة ، استنتج أنّ احتمال الحادثة

X ليكن X المتغيّر العشوائي الذي يرفق بكل سحب لثلاث كريات عدد الكريات المتبقية التي تحمل الرقم X

أ. عين القيّم الممكنة لـ X ثمّ عرف قانون احتمال المتغير العشوائي X .

" $2 - lnX \ge 0$ " : أحسب احتمال الحادثة :

التمرين الثاني: (04.5 ن)

: کثیر حدود للمتغیر المرکب Z المعرف کمایلی P(z) (1

 $P(z) = z^{3} + (2 - \sqrt{3})z^{2} + (3 - 2\sqrt{3})z + 6$

 $P(z)=(z+2)(z^2+az+b)$: أ. أحسب أي قرين العددين الحقيقيين a و d بحيث يكون P(-2). P(z) = 0 : المعادلة C في D المعادلة

ك المعلم (C و B ، A و B ، النقط B ، النقط C و المتجانس (C و C و المتجانس (C و المتجانس).

و $z_C=-2$ على الترتيب $z_B=\overline{z_A}$ ، $z_A=1+i\sqrt{3}$

أ. أكتب كلا من z_A و z_C على الشكل الأسي ثمّ استنتج أنّ النقط z_C و z_B ، z_A و أ. أكتب كلا من

ب. عين z_E و Z_F لواحق النقطتين E و E حتى يكون المثلثين ACE و ACE قائمين في E و على الترتيب .

ج. عيّن قيم العدد الطبيعي n حتى يكون العدد $\left(\frac{z_A}{z_B}\right)^n$ حقيقي .

. $L = \frac{z_A - z_C}{z_B - z_C}$: أ. أكتب العدد L على الشكل الأسي حيث (3

ب. حدد مع التعليل طبيعة المثلث ABC.

ج. عيّن Z_D لاحقة النقطة D حتى يكون الرباعي ABCD متوازي أضلاع .

. \mathbb{R}_+^* عيّن ثمّ أنشئ (Δ) مجموعة النقط M ذات اللاحقة $z=ke^{-irac{2\pi}{3}}$ عندما و عندما $Z=ke^{-irac{2\pi}{3}}$

التمرين الثالث: (04.5 نقاط)

 $u_{n+1}=2^{1-n}(u_n)^2: n$ ومن أجل كل عدد طبيعي $u_0=rac{1}{2}:\dots$ المعرفة ب $u_0=rac{1}{2}:\dots$ ومن أجل كل عدد طبيعي $u_0=rac{1}{2}:\dots$ ومن أجل كل عدد طبيعي $u_0=rac{1}{2}:\dots$ ومن أجل كل عدد طبيعي $u_0=rac{1}{2}:\dots$

بيّن أنّ المنتالية (u_n) متناقصة تماما ثمّ استنتج أنّها متقاربة نحو عدد حقيقي يطلب تعيينه (2

. $S_n = u_0 + u_1 + u_2 + \dots + u_n$: n نعتبر المجموع S_n حيث من أجل كل عدد طبيعي (3

. $0 \leq S_n \leq 2^n - \frac{1}{2}$: بيّن أنّ

. $v_n = n - \frac{ln(u_n)}{ln2}$: بعتبر المتتالية العددية (v_n) المعرفة على المعرفة على نعتبر

. n برهن أنّ المتتالية (v_n) هندسية ، ثمّ أكتب v_n بدلالة (1

. $\lim_{n\to +\infty}u_n$ بيّن أنّه من أجل كل عدد طبيعي $n=2^{n-2^n}$: n عدد طبيعي (2

. $T_n = u_0 \times u_1 \times u_2 \times ... \times u_n$: کتب T_n بدلالة T_n بدلالة (3

التمرين الرابع: (07 نقاط)

. $g(x)=(1-x)e^x+1:$ ب الدالة العددية g المعرفة على $g(x)=(1-x)e^x+1:$

. أحسب $\lim_{x \to +\infty} g(x)$ ثمّ أدرس اتجاه تغيّرات الدالة g على المجال g(x) و شكل جدول تغيّراتها (1

1,27 < lpha < 1,28 : بيّن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا (2

.[1; + ∞ [على g(x) استنج إشارة (3

ال لتكن الدالة f المعرفة على $]\infty+\infty$ $]1;+\infty$ $]1;+\infty$ بدت الدالة $[C_f]$. $f(x)=e^x-\ln(x-1):$ بدت [i] بدت المستوي المستوي المستوي المنسوب الى معلم متعامد [i] حيث [i] حيث [i] المنسوب الى معلم متعامد [i]

. $f(\alpha)$ بين أنّ : $f(\alpha) = \alpha + \frac{1}{\alpha - 1}$ ثمّ أعط حصرا لـ (1

. $f(x) = x\left(\frac{e^x}{x} - \frac{x-1}{x} \times \frac{\ln(x-1)}{x-1}\right)$: أن يين من أجل كل عدد حقيقي x من المجال $f(x) = x\left(\frac{e^x}{x} - \frac{x-1}{x} \times \frac{\ln(x-1)}{x-1}\right)$: أن بيّن من أجل كل عدد حقيقي x من المجال x عند x

. النتيجة بيانيا أ $\lim_{\substack{x \to 1 \\ x \to 1}} f(x)$ أحسب (3

، $f'(x) = \frac{-g(x)}{x-1}$:]1; + ∞ [بیّن أنّه من أجل كل عدد حقیقي x من المجال (4

. مل المنحنى (C_f) يقبل نقطة انعطاف ؟ علل (5

.]1; e] من المجال على المجال من f ثمّ أنشئ المنحنى (C_f) على المجال من (f

اً. تحقق أنّ الدالة $x\mapsto ln(x-1)$ هي دالة أصلية للدالة $x\mapsto (x-1)ln(x-1)-x$ على المجال (7 $x\mapsto ln(x-1)$).]1; $+\infty$ [

ب. أحسب بالسنتمتر المربع المساحة ${\cal A}$ للحيّز المستوي الحدد بالمنحنى (C_f) ومحور الفواصل والمستقيمين x=2 و x=1.5 .

الموضوع الثاني

التمرين الأول: (04 نقاط)

نعتبر في المستوي المركب منسوب الى المعلم المتعامد والمتجانس $(0; \vec{u}; \vec{v})$ النقط B ، A و C لواحقها:

- . على الترتيب $z_C=z_Ae^{irac{5\pi}{6}}$ و $z_B=1-i\sqrt{3}$ ، $z_A=1+i\sqrt{3}$
- . $z^2 2z + 4 = 0$: z^2
- 2) أحسب كلا من $|z_A|$ ، $|z_B|$ و $|z_C|$ ثمّ استنتج أنّ النقط B،A و $|z_C|$ تنتمي الى نفس الدائرة يطلب تعيين مركز ها ونصف قطر ها .
 - . أ. أكتب كلا من z_B ، z_B و ملى الشكل الأسي z_B
 - . ABO على الشكل الأسي ثمّ استنتج طبيعة المثلث .ب أكتب $\frac{Z_A}{Z_B}$
- . عيّن قيم العدد الطبيعي n حتى يكون $\left(\frac{z_A}{z_B}\right)^n$ حقيقي موجب تماما ثمّ اكتب $\left(\frac{z_A}{z_B}\right)^n$ على الشكل الجبري (4
 - $\left|\frac{iz-\sqrt{3}-i}{\bar{z}}\right|=1$: عيّن مجموعة النقط من المستوي ذات اللاحقة z حيث : (5

التمرين الثاني: (04.5 نقاط)

- . $f(x) = \frac{x^2+3}{x+1}$: كمايلي : $f(x) = \frac{x^2+3}{x+1}$ كمايلي : $f(x) = \frac{x^2+3}{x+1}$ كمايلي : $f(x) = \frac{x^2+3}{x+1}$
 - . f أدرس اتجاه تغيّر الدالة
- $u_{n+1}=f(u_n)$: n عدد طبيعي عدد $u_0=1$: المعرفة بـ المعرف
 - $1 \leq u_n \leq 3:n$ أ. برهن بالتراجع أنّه من أجل كل عدد طبيعي (1
 - (u_n) أدرس اتجاه تغيّر المتتالية
 - ج. هل المتتالية (u_n) متقاربة ؟ برر اجابتك .
 - $3 u_{n+1} \le \frac{3}{4}(3 u_n)$: n عدد طبیعي عدد طبیعي الجل کل عدد طبیعي (2
 - $0 \leq 3 u_n \leq 2\left(\frac{3}{4}\right)^n$: من أجل كل عدد طبيعي من أجل كل عدد عدد البيعي
 - . (u_n) ج. أحسب نهاية المتتالية
 - $S_n = u_0 + u_1 + u_2 + \dots + u_n$: شعع من أجل كل عدد طبيعي (3
- . $8\left(\left(\frac{3}{4}\right)^{n+1}-1\right)+\ 3(n+1)\leq S_n\leq 3(n+1)$: n عدد طبیعي عدد طبیعي أ.
 - $\lim_{n\to+\infty} S_n$: ب. أحسب

التمرين الثالث: (04.5 نقاط)

يحتوي كيس U_1 على خمس كريات حمراء وأربع كريات بيضاء ، و يحتوي كيس U_2 على أربع كريات حمراء و تلاث كريات بيضاء ، (الكريات كلها متماثلة و لانفرق بينها باللمس) .

نرمي زهر نرد غير مزُيف ، اذا تحصلنا على رقم مضاعف لـ 3 نسحب كريتين في آن واحد من الكيس U_1 ، وفي باقي الحالات نسحب كريتين على التوالي معارجاع الكرية المسحوبة من U_2 .

 $\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$

 $^{"}$ نسمي الحدث A: " الحصول على رقم مضاعف لـ 3

" الحصول على كريتين من نفس اللون B

- 1) أنقل شجرة الاحتمالات المقابلة ثمّ أكملها.
 - . P(B) أحسب (2
- . U_2 علما أنّ الكريتين المسحوبتين من نفس اللون ماهو احتمال ان تكونا من الكيس (3
- 4) نعتبر المتغيّر العشوائي X الذي يرفق بكل سحبة العدد 2 في حال كانت الكريتان من نفس اللون و العدد 1 في حال كانت الكريتان مختلفتين في اللون .
 - أ. عرّف قانون احتمال المتغيّر العشوائي X.

.
$$E(X) = \frac{205}{441}$$
 بيّن أنّ

التمرين الرابع: (07 نقاط)

- و الدالة العددية المعرفة على \mathbb{R} بـ \mathbb{R} بـ \mathbb{R} بـ $g(x)=(2-x)e^x+2$ و g(x)=g(x)=g(x) تمثيلها البياني في مستو منسوب الدالة العددية المعرفة على g(x)=g(x)=g(x)=g(x) . (كما في الشكل)
 - : حيث α عين أنّ المعادلة g(x)=0 تقبل حلا وحيدا (1
 - $\alpha < 2,21 < \alpha < 2,22$
 - \mathbb{R} على g(-x) على إشارة g(x) على g(x) على إبقراءة بيانية عيّن إشارة

$$f(x) = \frac{x^2}{1 + e^{-x}}$$
: بالدالة العددية المعرفة على f بالدالة العددية المعرفة على f

- نمثيلها البياني في المستوي المنسوب الى معلم متعامد ومتجانس (\mathcal{C}_f) ،
 - $(0; \vec{i}; \vec{j})$
- . أحسب: $\lim_{x \to -\infty} f(x)$ ، $\lim_{x \to +\infty} f(x)$ ، أحسب: (1
 - . $f'(x) = \frac{x.g(-x)}{(1+e^{-x})^2}$: x عدد حقیقی عدد عن أَجَل كل عدد (2
 - ب استنتج اتجاه تغیّر الدالة f ثمّ شكل جدول تغیّر اتها .
 - $f(-\alpha)$ ج. بيّن أنّ $f(-\alpha) = \alpha(\alpha-2)$ ثمّ أعط حصر اللعدد
- . 1,1 <eta< 1,2 : مين أنّ المعادلة f(x)=1 تقبل حلا وحيدا eta حيث (3
 - ب. حل في المعادلة $E\left(f(x)\right)=0$ حيث $E\left(f(x)\right)=0$ الصحيح .
 - . \mathbb{R} على على المنحنى الممثل للدالة $x \mapsto x^2$ على (4
 - . النتيجة بيانيا ، $\lim_{x \to +\infty} [f(x) x^2] = 0$: أ. بيّن أنّ
 - . (Γ) و (C_f) ب. أدرس الوضعية النسبية للمنحنيين
 - (f(-lpha)pprox 0.48 : نقطی (C_f) و (Γ) انشئ (5)
- . $f(x) = x^2 + ln(m)$: عدد حلول المعادلة وحسب قيّم الوسيط الحقيقي الموجب تماما m عدد حلول المعادلة (6
- 7) بيّن أنّه من أجل كل عدد حقيقي $x^2: x \leq f(x) \leq 0$ ، ثمّ استنتج حصر اللعدد A الذي يمثل مساحة الحيز المستوي المحدد بـ A ، محور الفواصل والمستقيمين اللذين معادلتهما A و A و A .

انتهى الموضوع الثاني.