دورة: ماي2019

الجمهورية الجزائرية الديمقراطية الشعبية امتحان بكالوريا تجريبي

ثانوية الشهيد مرواني الجيلالي الشعبة: تقني رياضي

اختبار في مادة الرياضيات على المترشح أن يختار أحد الموضوعين التاليين المدة 4 و30-الموضوع الأول التمرين الاول: \overline{bbab}^8 و يكتب \overline{abcca}^{5} عدد طبیعي غیر معدوم یکتب N:(I)8 b 2)بين أن العدد 3 309a + 15c = 226b : بين أن N يحقق N309(a-2) = 60-15c : في مايلي ناخذ (b=3)بين أن : (II) $(c \ a \ (a-2) \ 5$ 10 N(التمرين الثاني: lpha 1 متویکیسطی 10 کراتمنها 3بیضاءتحملارقام 1 ایمتویکیسطی متابعت lpha2α **2 1 1: 1** $1+\alpha$ **2**:)نسحبعشو الباكر تاندفعةو احدة (α عددطبيعي فرديا :)احتمالالحصولعليكرتينتحملكلمنهمارقمافرديا.)احتمالانيكونمجمو عالرقميذ ظاهرينعليالكرتينزوجيا. $\alpha = 1$: فيمايليناخذ (II (a P(A)- 1 P(B)- 2 B A هلالحادثتان $P(A \cap B)$ - 3 4 - احسباحتمالسحبكرتانمننفساللونعلماانهمامننفسالرقم ليكنالمتغير العشوائي X الذيير فقبكلسحبة لكرتبند فعة واحدة مجمو عالر قمينالظا هرين. (b)عرفقانوناحتمالالمتغير العشوائي X ثماحسباملهالرياضياتي E(X) . التمرين الثالث: $z^2 + 2\sqrt{3}z + 4 = 0$: ((1 $z_C = -\sqrt{3} - i$ $z_B = -\sqrt{3} + i$ $z_A = 2i$ Z_C Z_R Z_A بين أن العدد Z_R^{2019} تخيلي صرف.

$$.(O;\vec{i},\vec{j}) \tag{2}$$

.
$$z_C = -\sqrt{3} - i$$
 $z_B = -\sqrt{3} + i$ $z_A = 2i$ التي لواحقها C B A

احسب قيس الزاوية $\overline{OA}; \overline{OB}$ ثم استنتج طبيعة المثلث OABC) احسب قيس الزاوية $\overline{OA}; \overline{OB}$ معين يطلب حساب مساحته.

(A O ويحول B r) حدد زاوية الدوران B

h

.2

B

رة التحويل $S = r \circ h$ واعطعناصره المميزة.

عين طبيعة صورة المعين OABC بالتحويل S ثم استنتج مساحته.

 $(z+\sqrt{3}-i)(z+\sqrt{3}+i)=4$: حيث حيث النقط ذات اللاحقة عين مجموعة النقط

التمرين الرابع:

.
$$f(x) = 1 - \frac{1}{2}x - \frac{2}{e^x + 1}$$
: R f لتكن الدالة العددية f

 $(\mathrm{O}; ec{i}, ec{j})$ تمثیلها فی معلم متعامد متجانس (C_f) .(2cm)

.
$$\lim_{x \to -\infty} f(x)$$
 $\lim_{x \to +\infty} f(x)$ انحقق أنه من أجل كل عدد حقيقي $\lim_{x \to -\infty} f(x)$)بين $\lim_{x \to -\infty} f(x)$ انحقق أنه من أجل كل عدد حقيقي $\lim_{x \to -\infty} f(x)$

. استنتج اتجاه تغیر
$$f$$
 و شکل جدول تغیراتها f یبین أنه من أجل کل عدد حقیقی f : f (f) f

$$1 - \frac{2}{e^x + 1} \le \frac{1}{2}x$$
: ينا $[0; +\infty[$ x كل كل كل)

.
$$\lim_{x\to +\infty} \left\lceil f(x) - 1 + \frac{1}{2}x \right\rceil$$
 ((3

يقبل مستقيم مقارب مائلا أخر
$$(\Delta)$$
يطلب تعين معادلته. ((C_f)

.
$$(C_f)$$
 (Δ) و المستقيم $y=1-\frac{1}{2}x$ (d) ارسم المستقيم (4)

.
$$\frac{1}{e^x + 1} = \frac{e^{-x}}{1 + e^{-x}}$$
 اليكن λ عدد حقيقي موجب تماما .) بين أنه من أجل كل عدد حقيقي λ ليكن اليكن الين أنه من أجل كل عدد حقيقي موجب تماما .

.
$$\lim_{\lambda \to \infty} A(\lambda)$$
 $x = \lambda$ $x = 0$: التي معادلا ها (C_f) : $A(\lambda)$ مساحة الحيز (C_f) :

$$.u_{n+1}=1-rac{2}{e^{u_n}+1}$$
: N n $u_0=1$ المعرفة بحدها الاول $\left(u_n
ight)$ المعرفة بحدها الاول (u_n

. $u_{\scriptscriptstyle n} \succ 0$: n طبیعي انه من اجل کل عدد التراجع انه من اجل کا

.
$$u_{n+1} \leq \frac{1}{2}u_n$$
 : n استنتج أنه من أجل كل عدد طبيعي ((2

ية
$$(u_n)$$
 ماذ يمكن القول عن تقاربها.

$$\lim_{n\to +\infty} u_n$$
 $u_n \leq \left(\frac{1}{2}\right)^n$: N n کل (3)

```
التمرين الاول
```

$$.(O; \overline{i}, \overline{j}; \overline{k})$$

$$.D(-1; 4; 0) C(0; 3; -1) B(2; 0; -1) A(1; 1; 0):$$

$$ABCD \qquad (1$$

$$.3x + 2y + z - 5 = 0 \text{ (ABC)} \text{ (ABC)} \text{ (above the partial of the partial of$$

$$y = 4[11]$$
: (E) Z^2 (x, y) اثبت أنه اذا كانت الثنائية

b=11n+4 عدد طبیعیا غیر معدوم نضع : 2) عدد طبیعیا غیر معدوم عدد طبیعیا

- عين القيم الممكنة للقاسم المشنرك الاكبرللعدين -

$$PGCD(a,b) = 2$$
: عين قيم n بيحث يكون -

جـ - استنتج قيم n العدد الطبيعي بحيث يكون العددان b اوليان بينهما

10 2^n الدرس حسب قيم العدد الطبيعي n غير المعدوم بواقي القسمة الاقليدية للعدد (3

$$2^{2019}$$

$$2^{y-2x}\equiv 8$$
 عين كل الثنائيات $N^*\times N^*$ التي هي حلول للمعادلة (X^*) عين كل الثنائيات (

التمرين الرابع

$$g(x) = x^2 - 2x - 4\ln(x-1)$$
: $]1; +\infty[$

تمثيلها البياني كما هو موضح في الشكل المقابل:

g(x)=0 المعادلة و المنحني (Γ) عين حلول المعادلة (1

$$2.87 \prec \alpha \prec 2.88$$
: بين أن المعادلة $g(x)=0$ تقيل حلا وحيدا $g(2)$ بين أن المعادلة وين أن المعادلة وعندا وحيدا $g(2)$

$$]1;+\infty[$$
 $g(x)$ x مستنتج حسب قیم (3

$$f(x) = x - 3 + \frac{4\ln(x-1)}{x-1} + \frac{5}{x-1} : \pm \infty$$
 [[II]

$$(0; ec{i}, ec{j})$$
 المثيلة $\left(C_f
ight)$

$$\lim_{x\to +\infty} f(x)$$
 النتيجة بيانيا ثم احسب $\lim_{x\to 1} f(x)$ (1

$$\left(C_{f}\right)$$
 $y=x-3$ $\left(\Delta\right)$ بين أن المستقيم (2

 (Δ) ادرس وضعية المنحني (C_f) بالنسبة للمستقيم)

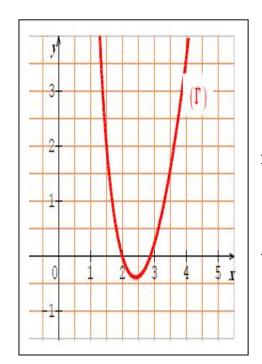
بین أنه من أجل کل
$$x$$
 $[1;+\infty]$ $f'(x)=\frac{g(x)}{\left(x-1\right)^2}$: $[1;+\infty]$ بین أنه من أجل کل $[x]$

$$(f(lpha)=3.9$$
) (C_f) (Δ) مستقیم (4

$$h(x) = \left(\ln\left(x-1\right)\right)^2$$
: کما یلي $]1; +\infty[$ h

$$]1;+\infty[$$
 f ثم استنتج دالة اصلية للدالة h' (

ثم فسر النتيجة بيانيا
$$\int_{2}^{5} f(x)dx \qquad ($$



_____بالتو فيق