الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية عين تموشنت

ثانوية داودي محمد ـ المالح ـ

2019/05/13

المدة: 3 سا

وزارة التربية الوطنية

اختبار الفصل الثالث (امتحان بكالوريا تجريبي)

القسم: 3 علوم تجريبية

اختبار في مادة: الرياضيات

على المترشح ان يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (4 نقاط)

C(1;1;-2) و B(0;3;-3)، A(1;2;-2) الفضاء منسوب إلى معلم م م $O(\vec{i},\vec{j},\vec{k})$.نعتبر النقط

اً ـ بين أن النقط A و B تعين مستويا. (1

ب ـ بين أن الشعاع $\vec{n}(1;0;-1)$ ناظمي للمستوي (ABC) ثم اكتب معادلة ديكارتية له.

 $x^2+y^2+z^2-2y+2z=0$: مجموعة النقط M(x;y;z) من الفضاء حيث (S) لتكن (S) مجموعة النقط (S) مجموعة النقط حكرة يطلب تحديد احداثيات مركزها Ω و نصف قطرها .

. (ABC) يمس المستوي (S) أ ـ بين أن سطح الكرة (S)

(ABC) ب الطول ΩC ثم استنتج نقطة التماس بين

التمرين الثاني: (4.5 نقاط)

 $z_{C}=e^{-irac{\pi}{6}}$ ، $z_{A}=i$: نعتبر في المستوي المركب المنسوب إلى م م م $O(\vec{i};\vec{j})$ النقط C في المستوي المركب المنسوب إلى م م م $C(\vec{i};\vec{j})$ النقط $C(\vec{i};\vec{j})$ و $C(\vec{i};\vec{j})$ النقطي المعرف بالعبارة المركبة $C(\vec{i};\vec{j})$ و $C(\vec{i};\vec{j})$ و

أ ـ اكتب z_C على الشكل الجبري.

ب ـ حدد طبيعة التحويل ٢ مع تعيين عناصره المميزة.

. $\{(A,2);(B,-1);(C,2)\}$ مرجح الجملة الجملة Z_D لاحقة الجملة الحملة الجملة الحملة الحملة الجملة الحملة الحملة

. $[0;2\pi]$ التي تحقق: $Z=e^{i\theta}$ التي تحقق $M\left(Z\right)$ النقط مجموعة النقط بيعة مجموعة النقط التي تحقق المجال التي تحقق

z'-i=2(z-i) عتبر الآن التحويل النقطي h الذي يحول M(Z) إلى M(Z) حيث: (3) نعتبر الآن التحويل h و عناصره المميزة.

 $z_D-z_C=e^{irac{\pi}{3}}\left(z_E-z_C
ight)$: ب _ اوجد $z_D=e^{irac{\pi}{3}}\left(z_E-z_C
ight)$ ب _ استنتج قيس للزاوية الموجهة $\left(\overrightarrow{CE};\overrightarrow{CD}\right)$ ثم حدد نوع المثلث . CDE

4) بين أن التحويل $s = r \circ h$ هو تشابه مباشر يطلب تعيين عناصره المميزة.

التمرين الثالث: (4 نقاط)

 $v_0=2$ و من أجل كل v_n من $v_0=1$ نعتبر المتتاليتان v_n و المعرفتين على v_n حيث: المعرفتين على $v_0=1$

$$v_{n+1} = \frac{1}{4}u_n + \frac{3}{4}v_n$$
 $u_{n+1} = \frac{3}{4}u_n + \frac{1}{4}v_n$

 $W_n = V_n - u_n$: المعرفة على N بنائية (w_n) المعرفة على (1

أ ـ بين أن المتتالية (w_n) هندسية أساسها $\frac{1}{2}$ و حدها الأول w_0 يطلب حسابه.

 \cdot 1im w_n ب - اكتب بدلالة n عبارة الحد العام w_n ثم احسب

- . $v_n \ge u_n$: N من n من أجل كل n شم استنتج إشارة w_n ثم استنتج إشارة u_n
- بين أن المتتالية (u_n) متزايدة تماما و المتتالية (v_n) متناقصة تماما.
 - . ℓ بين أن المتتاليتين (u_n) و (u_n) متقاربتان نحو نفس النهاية (3
 - $v_n + u_n = 3$: N من n من أجل كل أ ـ برهن بالتراجع أنه من أجل كل
 - ب ـ استنتج النهاية ب

<u>التمرين الرابع:</u> (7.5 نقاط)

- $g(x)=1-(x-1)e^{x-1}$ بـ $]-\infty;1]$ دالة معرفة على g (I
- .] $-\infty$;1] ثم ادرس اتجاه تغير الدالة g على المجال ا $\lim_{x \to \infty} g(x)$ احسب (1
 - .] $-\infty$:1] على g(x) على (2) شكل جدول تغيرات الدالة g(x) ثم استنتج اشارة
 - $f(x) = -e^{x-1} + \ln(1-x)$ بنكن الدالة f المعرفة على $-\infty$; 1 بالتكن الدالة f المعرفة على المع
 - السب النتيجة الثانية بيانيا. ا $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ احسب (1)
- . f تم شکل جدول تغیرات $f'(x) = \frac{-g(x)}{1}$:] $-\infty$;1[من أجل كل x من أحدول تغيرات x من أجل كل أحد كل أحد
- $-1 < \alpha < 0$: عين أن المنحنى (C_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث (3 α ب عين حصرا للعدد α سعته
 - $\cdot (C_f)$ احسب f(0) ثم انشئ المنحنى (4
- $-e^{x-1}-2m+\ln(1-x^{'})=0$ ناقش بيانيا حسب قيم الوسيط الحقيقى m عدد و إشارة حلول المعادلة: 0
 - $h(x) = (x-1)\ln(1-x)-x$ بعتبر الدالة h المعرفة على $[-\infty;1]$ بناله المعرفة على $h(x) = (x-1)\ln(1-x)$. $]{-\infty;1}$ على المجال $x\mapsto \ln(1-x)$ على المجال أ $+\infty;1$

ب ـ احسب العدد الحقيقي
$$\int_{-1}^{\alpha} f(x) dx$$
 ثم فسر النتيجة بيانيا.

الموضوع الثاني

التمرين الأول: (4 نقاط)

$$p(z) = z^3 - 3z^2 + 3z + 7$$
 نعتبر كثير الحدود التالي: (I

$$p(z) = (z+1)(z^2 + \alpha z + \beta)$$
: عين العددين الحقيقيين α و α بحيث يكون (1

$$p(z) = 0$$
 المعادلة: C حل في

$$D$$
 و C ، B ، A النقط $O; \vec{i}; \vec{j}$) نعتبر في المستوي المركب المنسوب إلى معلم متعامد و متجانس $O; \vec{i}; \vec{j}$

$$z_D = 3$$
 و $z_C = \overline{z_B}$ ، $z_B = 2 + \sqrt{3}i$ ، $z_A = -1$

$$\arg\left(\frac{Z_B - Z_A}{Z_C - Z_A}\right) = \left(\overline{AC}; \overline{AB}\right) : \text{(1)}$$

. اكتب العدد
$$\frac{Z_B-Z_A}{Z_C-Z_A}$$
 على الشكل الأسي ثم استنتج نوع المثلث (2

.
$$\{(A;-1);(B;2);(C;2)\}$$
 بين أن النقطة D هي مرجح الجملة

$$\left(-\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}\right)\cdot\overrightarrow{CD}=12$$
 التي تحقق: $M\left(x\;;y\right)$ مجموعة النقط (Δ) (4

اوجد بدلالة x و y احداثیات \overline{MD} ثم بین أن Δ هو مستقیم یطلب تحدید معادلة دیکارتیة له.

التمرين الثاني: (4 نقاط)

$$u_{n+2}=rac{2}{5}u_{n+1}-rac{1}{25}u_n:N$$
 متتالیة معرفة علی N ب $u_0=0$ و $u_0=0$ من أجل كل $u_0=0$ متتالیة معرفة علی $v_n=u_{n+1}-rac{1}{5}u_n:N$ نضع من أجل كل $u_0=0$ من $v_0=u_{n+1}-rac{1}{5}u_n$ و $v_0=u_{n+1}-rac{1}{5}u_n$

.
$$\nu_n$$
 هندسية أساسها $\frac{1}{5}$ يطلب حساب حدها الأول ν_0 و اعطاء عبارة حده العام (1

$$w_0$$
 بين أن المتتالية (w_n) حسابية أساسها 5 يطلب حساب حدها الأول (2

$$u_n = \frac{n}{5^{n-1}}$$
 : اكتب بدلالة n عبارة الحد العام m ثم بين أن (3

$$(u_{n+1} - \frac{2}{5}u_n \le 0)$$
 نه من أجل كل $u_{n+1} \le \frac{2}{5}u_n : N^*$ من N^* من N^* من N^* من N^* من N^* من أجل كل N^* من N^* من N^* من N^* من أجل كل N^* من أجل كل N^* من N^* من أجل كل N^* من أجل كل N^* من أجل كل N^* من N^* من أجل كل N^* من أجل كل أم من أبد كل أب

$$\cdot \lim_{n \to +\infty} u_n$$
 ج - استتج

التمرين الثالث: (4 نقاط)

يحتوي صندوق على ثلاث كريات بيضاء مرقمة من 1 إلى 3 ، و خمس كريات سوداء مرقمة من 1 إلى 5 لانفرق بينها عند اللمس. نسحب كريتين على التوالي و بدون إعادة الكرية المسحوبة إلى الصندوق.

- 1) اذكر لماذا لدينا تساوي الإحتمال؟
- " نعتبر الحوادث التالية: A سحب كريتين من نفس اللون (2

" سحب کریتین تحملان نفس الرقم " $\, C \,$ " سحب کریتین مجموع رقمیهما یساوي $\, B \,$

.
$$p(C)$$
 و $p(B)$: ثم احسب $p(A) = \frac{13}{28}$ أ ـ بين أن

ب ـ ما احتمال سحب كريتين تحملان نفس الرقم علما أنهما من نفس اللون؟

3) نعتبر المتغير العشوائي X الذي يرفق بكل سحب عدد الأرقام الزوجية المسحوبة.

أ ـ عرف قانون الإحتمال للمتغير العشوائي X .

.
$$v(X)$$
 ثم $E(X)$ ب ـ احسب

التمرين الرابع: (8 نقاط)

- $g(x) = 4xe^{2x} + 1$ ب: R دالة معرفة على g (I
 - 1) احسب نهایات الدالة g
- ادرس اتجاه تغير الدالة g على المجال R ثم شكل جدول تغيراتها.
 - g(x) > 0 : R من X من أجل كل كل (3
- $f(x) = x + 1 + (2x 1)e^{2x}$: بالمعرفة على $f(x) = x + 1 + (2x 1)e^{2x}$: بالتكن الدالة
 - $\lim_{x \to +\infty} f(x)$ احسب (1) $\lim_{x \to -\infty} f(x)$ احسب (1)
- . $-\infty$ بجوار C_f فو مستقیم مقارب مائل للمنحنی y=x+1 فو مستقیم (Δ) بجوار (2 بجوار Δ) بجوار . (Δ) بالنسبة للمستقیم (Δ) بحوار به نصور بالنسبة للمستقیم (Δ) بالنسبة للمستقیم (Δ) بحوار به نصور بالنسبة للمستقیم (Δ) بالنسبة (Δ) بالنسبة للمستقیم (Δ) بالنسبة (Δ) بالن
 - . f'(x) = g(x) بین أنه من أجل كل x من x من x من x ثم شكل جدول تغیرات (3
 - $\cdot \omega \left(\frac{-1}{2}; \frac{e-4}{2e} \right)$ أ ـ بين أن المنحنى $\left(C_f \right)$ يشمل النقطة (4

. (C_f) النقطة ω هي نقطة انعطاف للمنحنى ب

- $\cdot (C_f)$ و المنحنى (Δ) ثم انشئ (Δ) ثم انشئ (5
- $I = \int_{0}^{\frac{1}{2}} (2x 1)e^{2x} dx$: المكاملة بالتجزئة احسب العدد: (6

. f النتيجة المحصل عليها بالنسبة للدالة . $I=2\int\limits_0^{\frac{1}{2}}f\left(x
ight)dx$ ب التكامل . $I=2\int\limits_0^{\frac{1}{2}}f\left(x
ight)dx$

انتهى الموضوع الثاني