الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية أبى ذر الغفاري و متقن

مديرية التربية الوطنية للولايتين عين تموشنت و مستغانم

دورة : ماي 2019

امتحان تجريبي لبكالوريا تعليم ثانوي

الشعبة: العلوم التجربية

المدة : الرياضيات المدة : 3 ساعات

على المترشح أن يختار أحد الموضوعين الأتيين الموضوع الأول

التمرين الأول (4 نقط)

نعتبر في الفضاء المزود بالمعلم المتعامد و المتجانس $\left(O;\vec{i},\vec{j},\vec{k}\right)$ النقط C ، B ، A النقط المتعامد و المتجانس المتعامد و المتجانس المتعامد و المتجانس المتعامد و ا

. الإحداثيات (5;8;5) على الترتيب (1;2;-1)، (-2;2;2) على الترتيب

أ ـ بين أن $B \cdot A$ و C ليست في استقامية.

ABC ب استنتج طبیعة المثلت ، $\overrightarrow{AB} \cdot \overrightarrow{AC}$ ب المثلت

 $\vec{n}(5; \alpha; \beta)$ ليكن الشعاع /2

. (ABC) و α حتى يكون أ شعاع ناظمى لـ lpha و lpha حتى يكون أ

C و $B\cdot A$ الذي يشمل النقط $B\cdot A$ و C

ABCD ، أحسب حجم رباعي الوجوه D هو $\sqrt{86}$ ، أحسب حجم رباعي الوجوه .

(P) سطح کرة مرکزها النقطة Dو تمس المستوى (S).

أكتب معادلة ديكارتية لـ (S).

E(0;2;0) و العمودي على المستقيم الذي يشمل النقطة E(0;2;0) و العمودي على المستوى

. D في نقطتين متناظرتين بالنسبة إلى النقطة (Δ) بين أن

التمرين الثاني (5 نقط)

 $(o; \vec{u}; \vec{v})$ المستوي المركب المنسوب إلى معلم متعامد ومتجانس

 $a^3-b^3=(a-b)(a^2+b^2+ab)$ أ م و a عددان مركبان ، تحقق من صحة a م عددان مركبان ، أ

ب ـ حل في مجموعة الأعداد المركبة C المعادلة : $z = \frac{z-9}{z+4}$ حيث z هو المجهول.

. $z^3-27=0$ حيث حلول المعادلة ذات المجهول z حيث حيث حلول المعادلة ذات

. $z_C=3$ ، $z_B=\overline{z_A}$ ، $z_A=3e^{i\frac{4\pi}{3}}$ باتكن $z_A=3e^{i\frac{4\pi}{3}}$ باتكن $z_A=3e^{i\frac{4\pi}{3}}$ باتكن $z_A=3e^{i\frac{4\pi}{3}}$ باتكن $z_A=3e^{i\frac{4\pi}{3}}$ باتكن $z_A=3e^{i\frac{4\pi}{3}}$

. على الشكل الأسي $\frac{z_A-z_C}{z_B-z_C}$ على الشكل الأسي

. S مساحته مساحته ABC يطلب مساحته ABC

. A النقطة B النقطة B و الذي يحول النقطة B و الذي يحول النقطة B النقطة B النقطة B

. R بالدوران A بالدوران Z_D دات اللاحقة ما بالدوران D دات اللاحقة ما بالدوران D

ج ـ عين بدقة طبيعة الرباعي ABCD.

z المستوي التي لاحقاتها M

.
$$\left|\left(1+2\sqrt{2}\,i\right)z-2+4\sqrt{2}\,i\right|=3$$
: مجموعة النقط M من المستوي حيث E

. ($z-z_A$ مرافق $\overline{z-z_A}$ مرافق $\overline{z-z_A}$) $-\arg(z-z_A)-\arg(\overline{z-z_A})=\pi$: مرافق M من المستوي حيث E'

التمرين الثالت (4 نقط)

 $\begin{cases} u_4 = 19 \\ \ln(u_3) + \ln(u_5) = \ln(345) \end{cases}$: غير معدومة تحقق تحقق عداد طبيعية غير معدومة تحقق :

 u_0 عين الحدين u_0 عين الحدين الحدين (1

 $u_3 = 15$: بفرض (2

. أ عين رتبته u_n بدلالة n ثم بين أن 2019 حد من حدود u_n و عين رتبته

. 1962 يساوي (u_n) بين الحد الذي إبتداء الله يكون مجموع حدين متعاقبين من الحد الذي المتداء الله يكون مجموع حدين (u_n)

عدد طبیعی غیر معدوم n (3

. $S = u_0 + u_1 + u_2 \dots u_{2n}$: أ_ أحسب بدلالة n المجموع S حيث أ

 $S_2 = u_1 + u_3 + u_5 + \dots u_{2n-1}$ و $S_1 = u_0 + u_2 + u_4 + \dots u_{2n}$: حيث $S_2 = u_1 + u_3 + u_5 + \dots u_{2n-1}$ و المجموعين $S_1 = u_0 + u_2 + u_4 + \dots u_{2n}$

التمرين الرابع (7نقط)

نعتبر الدالة $f(x)=-x+\ln\left(\frac{x+3}{x-1}\right)$ عما يلي: $D_f=\left[-\infty,-3\right]$ نرمز بـ $C_f=\left[-\infty,-3\right]$ الى تمثيلها نعتبر الدالة $f(x)=-x+\ln\left(\frac{x+3}{x-1}\right)$

(الوحدة (2cm) (الوحدة ($(O;\vec{i},\vec{j})$) (الوحدة البياني في معلم متعامد و متجانس

A(-1;1) مركز تناظر للمنحنى مركز A(-1;1) مركز بين أن النقطة

. النايتين التاليتين التاليتين التاليتين التاليتين التاليتين التاليتين التاليتين بيانيا أ $\int 2$

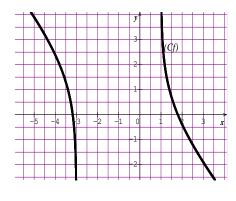
. $\lim_{x \to -\infty} f(x)$ أن $\lim_{x \to +\infty} f(x) = -\infty$ ثم إستنتج النهاية $\lim_{x \to +\infty} f(x) = -\infty$

 $-\infty$ و $+\infty$ بجوار C_f بجوار y=-x مقارب مائل للمنحنى ر Δ بجوار Δ بجوار Δ و Δ

 $\cdot(\Delta)$ النسبة إلى المستقيم بانسبة إلى المستقيم بادرس وضعية المنحنى المنحنى المنحنى بالنسبة إلى المستقيم

 $:D_f$ من x کل کمن x

مستنتجا اتجاه تغیر الدالة
$$f'(x) = \frac{-x^2-2x-1}{\left(x+3\right)\left(x-1\right)}$$


جدول تغيراتها.

. (C_f) الشكل المقابل يمثل المنحنى /5

أعد الرسم على ورقة ميليمترية مع رسم المستقيمات المقاربة .

وسيط حقيقي ، $\left(\Delta_{_{m}}
ight)$ المستقيمات التي معادلاتها m /6

y = mx + m + 1 :من الشكل

. A(-1;1) أ تشمل النقطة (Δ_m) أ بين أن جميع المستقيمات

f(x) = mx + m + 1: ب عين قيم m حتى لا تقبل المعادلة

 $\cdot \Re$ ذات المجهول الحقيقي x حلولا في

. عدد حقيقي a ، $h(x) = (x+a)\ln(x+a) - x$ عدد حقيقي a ، $h(x) = (x+a)\ln(x+a) - x$ عدد حقيقي a ،

.]1;+ ∞ [على المجال]1;+ ∞

x=3 و x=2 المستقيمين (Δ) والمستقيم والمستقيم والمستقيمين (C_f) والمستقيمين (C_f)

إنتهى الموضوع الأول