الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية باتنة

وزارة التربية الوطنية

دورة:فيفري 2016

إختبار الثلاثي الثاني

ثانوية مصطفى بن بولعيد

الشعبة :علوم تجريبية

المدة: 3 ساعات

اختبار في مادة: الرياضيات

التمرين الأول: (4 نقاط)

عين الإقتراح الصحيح الوحيد من بين الإقتراحات الثلاثة, في كل حالة من الحالات الأربعة الآتية مع التعليل:

ي هو \mathbb{C} عادلة المركبة عداد المركبة الأعداد المركبة (1

 $4-i \left(\div \right)$ $1+i \left(\div \right)$ $2+2i \left(\right)$

يساوي: $z_1 = z_1 = z_1 = z_1 = z_1 = z_1$ يساوي: (2 ليكن $z_2 = z_1 = z_1 = z_1 = z_1$ يساوي:

 $-e^{-i\frac{3\pi}{4}} \left(\Rightarrow \qquad 2e^{i\frac{\pi}{3}} \left(\because \qquad \sqrt{3} e^{i\frac{5}{6\pi}} \right) \right)$

(3) المستوي المركب منسوب الى المعلم المتعامد والمتجانس (o, \vec{u}, \vec{v}) . لتكن النقطتان a المعرفتين a المعرفتين a على الترتيب.

لاحقة النقطة C صورة B بالدوران الذي مركزه A وزاويته C هي:

 $2i \left(\Rightarrow \sqrt{3} + i \left(\because \sqrt{3} + 2i \right) \right)$

4) المستوي المركب منسوب الى المعلم المتعامد و المتجانس (o,\vec{u},\vec{v}) مجموعة النقط M التي لاحقتها z=x+iy

R=2 فطرها قطرها I(2,3) مستقیم معادلة له: y=-x بنصف مستقیم بنان مستقیم معادلة اله:

التمرين الثاني: (4 نقاط)

 $(o; \vec{i}; \vec{j}; \vec{k})$ انعتبر النقط المتعامد و المتجانس ($(o; \vec{i}; \vec{j}; \vec{k})$) انعتبر

. E(4;-8;-4) و D(3;-6;1) ، C(3;1;3) ، B(2;0;2) ، A(1,2,7)

1) بين أن النقط A ، B ، A اليست في استقامية.

. کیدن u عددان حقیقیان (2) لیکن u عددان حقیقیان (2) لیکن u عددان حقیقیان (2)

أ) عين b و c بحيث يكون \vec{u} شعاعا ناظميا للمستوي (ABC) .

. (ABC) باستنج أن x-2y+z-4=0 هي معادلة ديكارتية للمستوي

ج) بین أن (ABCD) رباعی وجوه

أهلب الورة

الصفحة 2/1

$$(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}).\overrightarrow{OA} = 0$$
 2 د)عین (۲)مجموعة النقط ال

$$\begin{cases} x=2t+3 \\ y=-4t+5, (t\in\mathbb{R}) :$$
 يعتبر المستقيم (Δ) الذي تمثيله الوسيطي $z=2t-1$

. (ABC) عمودي على المستقيم (Δ) عمودي على المستوي

. (ABC) عين إحداثيات النقطة H نقطة تقاطع المستقيم (Δ) والمستوي

(ABC) الدرس وضعية المستقيم (DE)بالنسبة إلى المستوي

 $x^2 + y^2 + z^2 - 2x + 2z = 0$ أثبت وجود مستويين يوازيان (ABC) ويمسان سطح الكرة (s)ذات المعادلة: (**4**)

$$\lim_{x\to +\infty} \frac{\ln x}{x} = 0$$
)علما أن $\lim_{x\to 0^+} x \ln x = 0$ علما أن

a عددان مرکبان حیث |a|=|b|=1 و a عددان مرکبان حیث b,a (2

رافق z=z حيث z=zمرافق z=z

ب)برهن أن العدد: $\frac{a+b}{1+ab}$ حقيقي

 $\lim_{x\to 0} \frac{e^x + 2015x - 1}{x}$: أوجد

التمرين الرابع: (8ن)

في المستوي المنسوب إلى المعلم المتعامد و المتجانس، (C_f) هو التمثيل البياني للدالة f المعرفة على المجموعة $f(x)=2x-2+\ln(\frac{x^2-2x+2}{x^2})$

- ا، ثم فسر النتيجة بيانيا. ا $\lim_{x\to 0} f(x)$ أحسب (1
- . النتيجة بيانيا، $\lim_{|x|\to+\infty} [f(x)-(2x-2)]$ وفسر النتيجة بيانيا.
- $f'(x) = \frac{2(x-1)(x^2-x+2)}{x(x^2-2x+2)}$: \mathbb{R}^* من أجل كل X من أجل كل (3)
 - f ثم شكل جدول تغيرات الدالة f'(x) ثم شكل جدول تغيرات الدالة
- $f(\alpha)=0$:حيث $\left[-\frac{1}{2},-\frac{1}{3}\right]$ من المجال مين أنه يوجد عدد حقيقي وحيد α من المجال
 - . f(x) عين حسب قيم x إشارة (4
 - y=2x-2 أدرس الوضع النسبي لـ (C_f) والمستقيم (Δ) ذي المعادلة (5
- (T): عين النقطة من (C_f) التي يكون عندها المماس (T) موازيا للمستقيم ((C_f) ثم أكتب معادلة لـ (6)
 - (C_f) و (T) (Δ) أرسم (7