الجمهورية الجزائرية الديمقراطية الشعبية.

السنة الدراسية: 2022/2021

المدة: 2 ساعة

ثانوية: الشهيد باهي الطاهر بالعقلة

الشعبة: علوم تجريبية + تقني رياضي

اختبار الثلاثي الثاني في مادة الرياضيات

التمرين الأول: (06 نقاط)

$$u_{n+1} = \frac{u_n - 1}{u_n + 3}$$
 و $u_0 = 0$ بـ: $u_0 = 0$ بـ الله عددية معرفة على $u_0 = 0$

$$-1 < u_n \le 0$$
 : ثم برهن بالتراجع أن $u_{n+1} = 1 - \frac{4}{u_n + 3}$: أ) بين من أجل كل عدد طبيعي n أن: n

ب) حدد اتجاه تغير المتتالية (u_n) واستنتج أنها متقاربة.

$$v_n = \frac{1}{u_n + 1}$$
 : بعتبر المتتالية (v_n) المعرفة على \mathbb{N} بناية -2

أ) بين أن (v_n) متتالية حسابية يطلب تحديد أساسها وحدها الأول.

n بدلالة u_n بدلالة v_n بدلالة باحسب v_n

$$.S_n = u_0 \times v_0 + u_1 \times v_1 + u_2 \times v_2 + \dots + u_n \times v_n$$
 | -3

التمرين الثاني: (06 نقاط)

$$I_2 = \int_0^1 g(x) dx$$
 $I_1 = \int_0^1 f(x) dx$ every $g(x) = \frac{x^3}{1+x^2}$ of $f(x) = \frac{x}{1+x^2}$ \mathbb{R} \mathbb

اختر الإجابة الوحيدة الصحيحة من بين الإجابات الثلاث مع التعليل

$$I_1 = \ln 3$$
 (\Rightarrow $I_1 = \frac{1}{2} \ln 2$ (\Rightarrow

$$I_1 = \ln 2 \text{ (}^{5} -1$$

$$I_1 + I_2 = 2 \int_0^1 x dx$$
 (\Rightarrow $I_1 + I_2 = \frac{1}{2} \int_0^1 x dx$ (\Rightarrow

$$I_1 + I_2 = \int_0^1 x dx$$
 (\(-2\)

$$I_2 = \frac{1}{2}(1 - \ln 2)$$
 (\Rightarrow $I_2 = 1 - \frac{1}{2}\ln 2$ (\Rightarrow

$$I_2 = 1 - \ln 2$$
 ($^{\circ}$ -3

التمرين الثالث: (8 نقاط)

$$f(x) = x + 1 + 2\ln\left(\frac{x}{x-1}\right)$$
 بـ $D =]1, +\infty[$ دالة معرفة على f

(1cm وحدة الطول) ($o; \vec{i}, \vec{j}$) مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

 $\lim_{x \to +\infty} f(x)$ احسب النتیجة هندسیا، ثم احسب ا $\lim_{x \to +\infty} f(x)$ احسب (1- أ

ب) حدد اتجاه تغير الدالة f على D، واستنتج جدول تغيراتها.

2- أثبت أن المستقيم (Δ) معادلته: y=x+1 مستقيم مقارب للمنحنى (C_f) محددًا الوضع النسبي بينها.

 $y=3+\ln 4$: معادلته: (C_f) يقبل مماسا (T) في النقطة فاصلتها 2 معادلته: (C_f)

(T) و (Δ) ، $(C_f$) و (T)

m -5 وسيط حقيقي

 $y = mx - 2m + 3 + \ln 4$ نقطة ثابتة من المستقيم معادلته: $A(2;3 + \ln 4)$ نقطة (أ) تحقق أن النقطة (2;3 + $\ln 4$

 $f(x) = mx - 2m + 3 + \ln 4$:غاقش بيانيا وحسب قيم m عدد حلول المعادلة: