

فيفري <u>202</u>5 المدة: 1 سا.

ستوى:الثالثة علوم تجريبية فرض الفصل الثاني في مادة الرياضيات

المترين 1 (12 ن)

 $u_{n+1}=rac{4u_n}{u_n+2}$ ، n عدد طبیعي $u_0=4:-1$ و من اجل کل عدد طبیعي $u_0=4:-1$

$$u_{n+1} = 4 - \frac{8}{u_{n+2}}$$
 ، n برهن انه من اجل کل عدد طبیعي (1

 $2 < u_n \leq 4 : n$ برهن بالتراجع انه من اجل كل عدد طبيعي (2

(3 ادر س اتجاه تغير المتتالية (u_n) . ماذا تستنتج

$$v_n = ln(\frac{u_n}{u_n-2})$$
 : ب $\mathbb N$ متتالیة عددیة معرفة علی (v_n) (4

أ) اثبت أن (v_n) متتالية حسابية يطلب تعيين أساسها و حدها الأول .

$$\lim_{n o +\infty} \, u_n$$
 ثم احسب $u_n = rac{2}{1-(rac{1}{2})^{n+1}}$ ، n عدد طبیعی $u_n = rac{2}{1-(rac{1}{2})^{n+1}}$ عدد طبیعی u_n ثم احسب u_n

$$S_n = e^{v_0} + e^{v_1} + \dots + e^{v_n} : S_n$$
 اكتب بدلالة n المجموع (5

التمرين 2 (8 ن)

 $u_{n+1}=rac{3u_n+2}{u_n+4}$ ، u_n و من اجل کل عدد طبیعي $u_0=lpha:-u_0$ نعتبر المتتالیة u_n

عدد حقیقی موجب تماما. α

عين قيمة α حتى تكون (u_n) متتالية ثابتة.

$$lpha=rac{1}{4}$$
نضع في ما يلي (II)

$$v_n = \frac{u_n + 2}{1 - u_n}$$
: بعتبر المتتالية (v_n) المعرفة على المعرفة على بعتبر

. بين أن المتتالية (v_n) هندسية يطلب تعيين أساسها و حدها الأول (1)

$$\lim_{n \to +\infty} u_n$$
 عبر عن v_n بدلالة n . ثم احسب (2

: ميث P_n احسب بدلالة p المجموع p و الجداء (3

$$S_n = \frac{1}{v_0} + \frac{5}{v_1} + \frac{5^2}{v_2} + \dots + \frac{5^n}{v_n}$$
 ; $P_n = v_0 \times v_1 \times \dots \times v_n$

بالتوفيق

التصحيح النموذجي

التمرين 1 (12 ن)

$$u_{n+1} = 4 - \frac{8}{u_{n+2}}$$
 ، n عدد طبیعي البر هان انه من اجل کل عدد طبیعي (1

$$2 < u_n \le 4$$
: n البرهان بالتراجع انه من اجل كل عدد طبيعي (2

$$(u_n)$$
 اتجاه تغير المتتالية (3

$$u_{n+1}-u_n=rac{-u_n^2+2\ u_n}{u_n+2}$$
: من اجل کل عدد طبیعي n من n من n

$$\mathbb N$$
 و منه $u_n = u_n$ اذن المتتالية $u_n = u_n < 0$ اذن المتتالية (u_n) متناتج أن المتتالية (u_n) متقاربة

4) أ) إثبات أن
$$(v_n)$$
 متتالية حسابية يطلب تعيين أساسها و حدها الأول .

$$v_{n+1}-v_n=\ln 2$$
 : من اجل کل عدد طبیعی n من n من احل کل عدد طبیعی

$$v_0=\ln 2$$
 و حدها الأول $r=\ln 2$ إذن المتتالية (v_n) حسابية أساسها

$$\lim_{n o +\infty} \, u_n$$
 ثم حساب ثم استنتج انه من اجل کل عدد طبیعي $u_n = rac{2}{1-(rac{1}{2})^{n+1}}$ نم حساب u_n ثم حساب u_n ثم حساب u_n

$$v_n = ln(2)^{n+1}$$
; $u_n = \frac{2}{1 - (\frac{1}{2})^{n+1}}$

$$\lim_{n\to+\infty} u_n=2$$

$$S_n = e^{v_0} + e^{v_1} + \dots + e^{v_n}$$
: المجموع (5) کتابة بدلالة $S_n = e^{v_0} + e^{v_1} + \dots + e^{v_n}$

$$S_n = e^{v_0} + e^{v_1} + \dots + e^{v_n} = -2(1 - (2)^{n+1})$$

التمرين 2 (8 ن)

تعیین قیمة lpha حتی تکون (u_n) متتالیة ثابتة.

 $\alpha = 1$

. نبين أن المتتالية (v_n) هندسية يطلب تعيين أساسها و حدها الأول (II

$$v_{n+1}=rac{5}{2}$$
 من اجل کل عدد طبیعی n من n لدینا :

$$v_0=3$$
 إذن المتتالية (v_n) هندسية أساسها $q=\frac{5}{2}$ و حدها الأول

$$\lim_{n\to +\infty} u_n$$
 التعبير عن v_n و v_n بدلالة u_n ثم حساب (2

;
$$v_n = 3\left(\frac{5}{2}\right)^n$$
; $u_n = \frac{-2+3\left(\frac{5}{2}\right)^n}{3\left(\frac{5}{2}\right)^n+1}$

$$\lim_{n\to+\infty} u_n = 1$$

: حساب بدلالة n المجموع S_n و الجداء (3

$$S_n = \frac{1}{v_0} + \frac{5}{v_1} + \frac{5^2}{v_2} + \dots + \frac{5^n}{v_n} = -\frac{1}{3} (1 - 2^{n+1})$$

$$P_n = v_0 \times v_1; \times \dots \times v_n = 3^{n+1} (\frac{5}{2})^{\frac{n(n+1)}{2}}$$