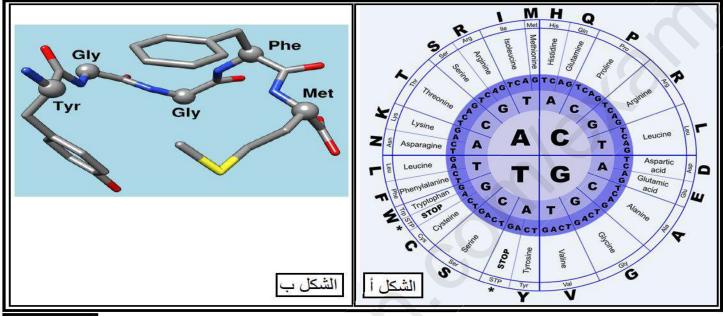
ي مادة العلوم الطبيعية والحياة


المدة: 1سا

المستوى:3 ع ت₁

<u>التمرين الأول:</u> (08 نقاط).

تعتبر البروتينات و البيبتيدات جزيئات اساسية في حياة الكائنات الحية حيث يتم تركيبها وفق آلية التعبير المورثي و ذلك بتحويل اللغة النووية الى لغة بروتينية باستعمال عناصر نووية و اخرى هيولية

تمثل الوثيقة 1 (الشكل أ) دائرة الشفرة الوراثية أما (الشكل ب) فيمثل نموذج لجزيئة Met-Enképhaline و هو مبلغ عصبي يدخل في وظائف الخلايا العصبية و يتكون من تسلسل الاحماض الامينية Tyr-Gly-Gly-Phe-Met

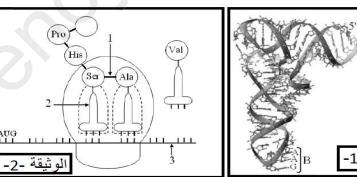
11 بعد تعريفك للغة النووية و البروتينية ، هل يمكن تحديد بدقة المورثة المشرفة على الوثيقة _1_ تركيب بيبتيد الشكل ب من الوثيقة 1؟ معللا اجابتك

2/ على ضوء ما سبق اشرح في نص علمي آلية تحويل اللغة النووية الى لغة بروتينية مبرزا العلاقة بين المورثة و البروتين.

<u>التمرين الثاني:</u> (12 نقاط).

باستعمال برنامج Anagène تمّت مقارنة تتابع نيكليوتيدات جزء من المورثة المسؤولة عن تركيب الأحماط الأمينية الستة الأخيرة للسلسلة البيبتيدية لإنزيم الريبونوكلياز

أ أمينية	الرامزات
Phe	UUU
Ser	UCA
Tyr	UAU
Pro	CCU
His	CAU
Val	GUC
Ala	GCU


.....GTA AAA CTA CGA AGT CAG 120 121 122 123 124

11 عرف برنامج Anagène.

- 2/ بالاعتماد على الشفرة الوراثية المقترحة في الجدول المقابل حدّد تتابع الأحماض الأمينية الموافقة لهذه السلسلة.
 - 13 استخرج أهمية الوسيط الكيميائي بين تتابع النيكليوتيدات في المورثة و تتابع

II- تمثل الوثيقة -1- نموذجا ثلاثي الأبعاد مأخوذ بواسطة برنامج راسمول لجزيئة تلعب دورا هاما في عملية تركيب البروتين، بينما تمثل الوثيقة -2- رسما تخطيطيا لمرحلة دمج (ارتباط) الأحماض الأمينية الستة الأولى أثناء تركيب إنزيم الريبونيوكلياز العادي..

- 1/ تعرف على الجزيئة الممثلة بالوثيقة -1-و سمّ المنطقتين A و B.
 - 2/ قدم وصفا مختصرا لهذه الجزيئة.
- 3/ أبرز العلاقة بين البنية الفراغية لهذه الجزيئة و وظيفتها في عملية تركيب البروتين.
- 4/ أعد رسم الوثيقة -2- على ورقة الإجابة مع إعطاء عنوانا مناسبا لها و كتابة القواعد الأزوتية التي تحملها العناصر (2) و (3).
- 5/ وضح بواسطة معادلة كيميائية كيفية تشكل

التمرين الأول:

- <u>1 - تعريف اللغة النووية</u> : (ابجدية باربعة احرف أي تكتب ب A/C/G/U في ال ARNm او A/C/G/T في ال ARNm او A/C/G/T

هي مجموعة كلمات (رامزات) احرفها عبارة عن تتالي نكليوتيدات (قواعد ازوتية) في ال ARNm - تعريف اللغة البروتينية: (ابجدية ب 20 حرفا): هي مجموعة كلمات (جزيئات بروتينية) تكتب بي 20 حرفا هي الاحماض الامينية حيث عددها و نوعها و ترتيبها يتحكم في بناء تلك الجزيئات البروتينية.

- لا يمكن تحديد بدقة المورثة المشرفة على تركيب بيبتيد الشكل ب.

- التعليل: لان معظم الاحماض الامينية تقابلها عدة رامزات في قاموس الشفرة الوراثية (الشكل أ) و بالتالي لا نستطيع استخراج بدقة الرامزة التي توافق كل حمض اميني في بيبتيد الانكيفالين.

2- النص العلمى:

مقدمة : إن اللغة النووية الممثلة بالمورثة (ADN) تكونها 4 أنواع من النكليوتيدات ، تستنسخ احدى سلسلتيها (السلسلة الناسخة) الى ARNm (لغة نووية اخرى) لتترجم هذه اللغة الى لغة بروتينية اساسها 20 نوع من الاحماض الامينية المختلفة و التي ترتبط وفق ترتيب و عدد محدد -تشرف عليه المورثة - لتشكل البروتين .

فكيف يتم تحويل اللغة النووية الى لغة بروتينية ؟

أو : ماهو عدد الاحرف التي تشكل كلمة نووية و التي تقابل كل حمض اميني ؟ و ما العلاقة بين المورثة و البروتين ؟

العرض : تعد البروتينات جزيئات حيوية تتميز ببنية خاصة تشرف على تركيبها مورثات ، حيث يتم التعبير عن المعلومة الوراثية التي توجد في ال ADN بآليتين متتاليتين، الاستنساخ التي تتم في النواة و يتم خلالها التصنيع الحيوي لجزيئة ال ARNm ، هذه الجزيئة عبارة عن رسالة نووية و التي تمثل الشفرة الوراثية المكتوبة ب 4 قواعد آزوتية و ذلك في وجود انزيم ARN بوليميراز و تخضع لتكامل نكليوتيدات بين سلسلة ال ARNm و السلسلة الناسخة في ال ADN ، لتهاجر جزيئة ال ARNm من النواة الى المهولى لترجمتها الى سلسلة بيبتيدية اي تحويلها الى لغة بروتينية.

نظريا لا يمكن للغة مكونة من 4 احرف أن تترجم الى لغة مكونة من 20 حرفا ، لذلك تم تصور عدة احتمالات لتحديد عدد القواعد الآزوتية الداخلة في تركيب كلمة نووية و التي تترجم و تشفر لحمض اميني ، و قد تم التوصل الى ان كل 3 نكليوتيدات تمثل رامزة (كلمة نووية) و تشفر لحمض اميني معين ، و من خلال هذا الاحتمال يمكن تشكيل 64 رامزة تكفي لتشفير 20 حمض اميني، و بقيادة مارشال نيرنبرغ ، تمكن فريق من العلماء من اكتشاف و فك جميع رموز الشفرة الوراثية التي وضعت في جدول يعرف بجدول الشفرة الوراثية و الذي يعتبر كقاموس يستعمل لترجمة اللغة النووية الى يد و تنية

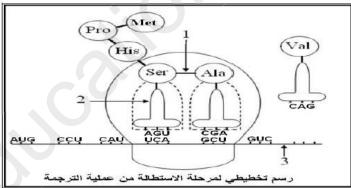
إن عملية بناء البروتين تتم في هيولى الخلية على مستوى الريبوزومات و تتطلب طاقة و احماض امينية منشطة، حيث تتم قراءة و التعرف على رامزات ال ARNm بفضل الرامزات المضادة في جزيئات ال ARNt الخاصة و ذلك بالتكامل بين نكليوتيداتهما و بالتالي يمكن تحديد نوع الحمض الاميني الذي يدخل في تركيب السلسلة البيبتيدية

الخاتمة: من خلال ما سبق ، تبدأ آليتي التعبير المورثي انطلاقا من المورثة و تنتهي بتشكل بروتين و منه يمكن القول ان هناك علاقة بين المورثة و البروتين المتشكل حيث عدد و نوع و ترتيب النكليوتيدات في ال ARNm يتحكم في عدد و ترتيب رامزات ال ARNm و التي بدورها تتحكم في عدد و نوع و ترتيب الاحماض الامينية المشكلة للبروتين.

مورثة مورثة بروتين مورثة مور

التمرين الثاني:

I - I- تعریف برنامج Anagène:


برنامج يستعمل أساسا لعرض و مقارنة تتابع النيكليوتيدات في ADN و ARN أو تتابع الأحماض الأمينية في بروتين، كما يستعمل كذلك لإجراء الاستنساخ و الترجمة.

2- تحديد تتابع الأحماض الأمينية في السلسلة 1:

ARNm:CAU UUU GAU GCU UCA GUC

.... His – Phe – Asp – Ala – Ser –Val 119 120 121 122 123 124

- 3- أهمية الوسيط: هو نقل المعلومة الوراثية من النواه الى الهيولى ، المشفرة لتتابع محدد من الاحماض الامينية.
 - ARNt تمثل الجزيئة الممثلة بالوثيقة -1-: جزيئة ARNt الموقع ARNt الموقع A= الرامزة المضادة.
- 2- وصف بنية ARNt: سلسلة من النيكلوتيدات الريبية ملتفة بشكل غير منتظم معطية بنية ثلاثية الأبعاد على شكل حرف L مقلوب تتميز بوجود نهايتين مهمين (الموقعين A و B السابقين).
 - 3- تملك جزيئة ARNt بنية فراغية مميزة بوجود موقعين أساسيين مما يعطيها قدرة وظيفية مضاعفة فهي :
 - تنشط الأحماض الأمينية بتدخل إنزيم نوعي و تنقلها إلى الريبوزومات بفضل موقع الارتباط مع الحمض الأميني (الموقع A)
 - تربط الأحماض الأمينية المنشطة في موقعها الخاص في السلسلة الببتيدية بفضل الرامزة المضادة (الموقع B).
 - 4- الرسم:

5- معادلة تشكل الر ابطة الببتيدية:

R2

H2N - CH - COOH + H2N - CH - COOH

H2N - CH - CO-NH - CH - COOH + H2O

R1

R1

بالتوفيق/ أستاذ المادة/ دربالــــي .