الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية كروصة السنوسي

السنة الدراسية: 2019/2018

المستوى: السنة الثالثة

المدة: 3ساعات

مديرية التربية لولاية مستغانم امتحان الفصل الأول

الشعب: تقني رياضي.

اختبار في مادة : العلوم الفيزيائية

التمرين الأول:

يهدف هذا التمرين إلى دراسة المتابعة الزمنية لتحول كيميائي عن طريق قياس الناقلية الكهربائية .

يمثل الجدول المرفق قيم الناقلية المولية لبعض الأيونات في الدرجة ℃20 يمثل

CH ₃ COO	HO⁻	Na ⁺	الأيون
4.1×10 ⁻³	20.0×10 ⁻³	5.0×10 ⁻³	$\lambda (S.m^2.mol^{-1})$

 $C_0=1.00 imes كائل الحجم كائل الحجم <math>V_0=200~mL$ من محلول مائي لهيدر وكسيد الصوديوم تركيزه المولي $V_0=200~mL$. $10^{-3}mol.~L^{-1}$

 $ho=0.90~g.mL^{-1}$ نضيف إلى الكأس الحجم $V_1=1~mL$ من ايتانوات الإثيل ($C_4H_8O_{2(l)}$) كتلته الحجمية $V_1=1~mL$ فنحصل على خليط (S) نضع في الكأس خلية لقياس الناقلية مرتبطة بحاسوب يمكن من تتبع تطور الناقلية النوعية σ للوسط التفاعلي (S) بدلالة الزمن .

ينمذج التحول الكيميائي الحادث الذي يعتبر تام بالمعادلة الكيميائية التالية:

$$Na_{(aq)}^{+} + HO_{(aq)}^{-} + C_{4}H_{8}O_{2(l)} = C_{2}H_{6}O_{(l)} + CH_{3}CO_{2(aq)}^{-} + Na_{(aq)}^{+}$$

1- تطور التحول:

1-1- أحسب كمية المادة الابتدائية للمتفاعلات .

2-1- أكمل جدول تقدم التفاعل أدناه ثم عرف تقدم التفاعل الأعظمي وأحسب قيمته .

$Na_{(aq)}^+ + HO_{(aq)}^- + C_4H_8O_{2(l)} = C_2H_6O_{(l)} + CH_3CO_{2(aq)}^- + Na_{(ad)}^+$ المعادلة				$+Na^+_{(aq)}$				
الحالة	التقدم	كمية المادة بـ mole						
الابتدائية	0							
الانتقالية	Χ							
النهائية	χ_{f}							

2- تتبع تطور التفاعل عن طريق الناقلية:

يهمل الحجم V_1 مقارنة بالحجم V_0 . نسمي V الحجم الكلي للوسط التفاعلي

. t في الناقلية النوعية للمحول في اللحظة t=0 و t=0 الناقلية النوعية في لحظة -1-2

أ- بين أن σ يعبر عنها بالعلاقة التالية :

$$\sigma = \sigma_0 + \frac{x}{V} \left(\lambda_{CH_3CO_2^-} - \lambda_{HO^-} \right)$$

$$\sigma_0 = (\lambda_{Na^+} + \lambda_{HO^-})C_0$$
: حيث

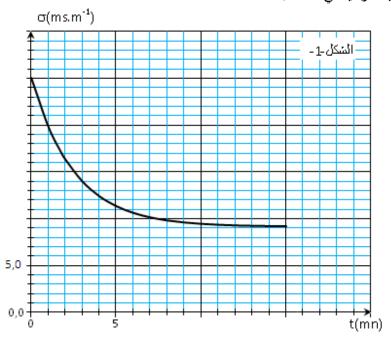
ب- فسر بشكل كيفي ، لماذا الناقلية النوعية σ للمحلول تتناقص خلال الزمن .

3- الدراسة الحركية:

مكن التتبع الزمني لهذا التحول بواسطة الناقلية النوعية من

الحصول على المنحنى البياني الممثل في الشكل-1-

1-1- عرف السرعة الحجمية للتفاعل ثم أكتب عبارتها بدلالة الناقلية النوعية


ب- أحسب قيمتها في اللحظتين : $t_1=3\ min$ و

 $t_2 = 13 min$

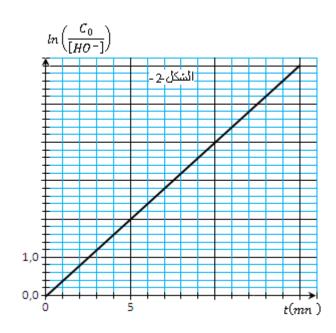
كيف تتغير هذه السرعة خلال الزمن ؟ فسر ذلك .

. عرف زمن نصف التفاعل t_{1} وأحسب قيمته .

3-3- نعيد نفس التجربة السابقة مع وضع الكأس في درجة حرارة قدر ها $40^{\circ}C$.

. ليكن t_1' زمن نصف التفاعل الموافق ، أختر الاجابة الصحيحة مع التعليل

3	2	1	الجواب
t'1/2 = t1/2	$t'_{1/2} > t_{1/2}$	t'1/2 < t1/2	
			التعليل


الصفحة 3/1

. C_0 بدلالة ين بدلالة ميدروكسيد في اللحظة $t_{1\over 2}$ بدلالة عن بدلالة الميدروكسيد في اللحظة بدلالة الميدروكسيد في اللحظة الميدروكسيد في الميدروكسيد في

.
$$\ln\left(\frac{c_0}{[HO^-]}\right)=f(t)$$
 نمثل البيان ، نمثل التفاعل نصف التفاعل -5-3

أنظر الشكل-2-

أحسب قيمة زمن نصف التفاعل $t_{\frac{1}{2}}$ و قرنها بتلك المتحصل عليها في السؤال (2-3)

التمرين الثاني:

يعتبر الطب أحد المجالات الرئيسية التي عرفت تطبيقات للأنشطة الإشعاعية ، حيث يوظف عدد من الأنوية المشعة لتشخيص الأمراض ومعالجتها من بينها الرينيوم 186 ¹⁸⁶Re الذي يستعمل جرعات منه للتخفيف من آلام الروماتيزم عن طريق الحقن .

المعطيات:

الأوسميوم 1 ⁸⁶ Os	الرينيوم ¹⁸⁶ Re	الإلكترون	النترون	البروتون	الجسيم او النواة
187.1832	187.1946	0.00055	1.00866	1.00723	m(u)
1u = 931.5 C ⁻² MeV			λ = $2.2 imes 10^{-6} S^{-1}$. ¹⁸⁶ Re أبت النشاط الاشعاعي لـ		

1- تفكك نواة الرينيوم ¹⁸⁶Re :

 $^{186}_{75}{
m Re}$. أعط مكونات نواة

 186 د ينتج عن تفكك نواة ^{186}Re نواة الأوسميوم ^{186}Os . (النواة البنت لا توجد في حالة إثارة) .

أ- ما نوع الاشعاع النافذ الذي يكون المريض في مأمن منه .

 $^{186}_{75}Os$ ب- أحسب طاقة الربط لنواة لكل من نواة $^{186}_{75}Re$ و

د- ينتج عن النواة المشعة نواة أكثر استقرارا . برر هذه العبارة .

ج- أكتب معادلة التفكك النووي لرينيوم 186 ، مع تحديد نمط التفكك .

ه- أحسب الطاقة المحررة نتيجة تفكك هذه النواة .

2- الحقن بالرينيوم 186:

. $V_0 = 10 \ mL$ يوجد الدواء المستعمل للحقن على شكل جرعات ، تحتوي على الرينيوم 186 ، حجم كل واحدة منها

. $A_0 = 4 imes 10^9 Bq$: هو $t_0 = 0$ هيمة النشاط الاشعاعي الموجودة في كل جرعة عند اللحظة

2-1-عرف البيكوريل.

. 2-2-أوجد عند اللحظة $t_1=4.8\, Jours$ ، قيمة N_1 عدد أنوية الرينيوم 186 الموجودة في كل جرعة .

3-2- في اللحظة t_1 ، نأخذ من الجرعة ذات الحجم V_0 ، حقنة حجمه V_0 وعدد أنوية الرينيوم 186 فيها هو $N=3.65\times 10^{13}$ ، ثم نحقن بها مريضا في مفصل الكتف أوجد قيمة الحجم V_0 .

التمرين الثالث:

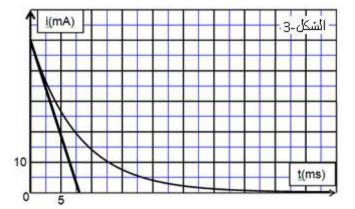
ننجز التركيب الكهربائي الممثل في الشكل -1- والمتكون من:

- مولد مثالي يقدم توترا كهربائيا E
 - ناقل أومى مقاومته R_1 متغيرة .
 - متغيرة . R متغيرة .
 - مكثفة سعتها C قاطعة K
- المكثفة فارغة تماما ، في اللحظة t=0 ، نغلق القاطعة .
- - . $i(t)=Ae^{-eta t}$: المعادلة التفاضلية السابقة ، تقبل حلا من الشكل

أوجد عبارتي كل من الثابتين A و β . حدد مدلولهما الفيزيائي .

- 2- أستنتج عبارة التوتر الكهربائي $u_{c}(t)$ بين طرفي المكثفة .
 - 1% بعد مدة زمنية Δt ، تشحن المكثفة كلية بتقريب 3
 - . Δt أ- ماذا تمثل المدة
 - ب- أوجد العلاقة بين المدة Δt و الثابت $\frac{1}{\beta}$.
- 4- نريد تعيين ، كل من سعة المكثفة C و مقاومة الناقل الأومى R_1 تجريبيا.

لتحقيق هذا الغرض ، نغير من قيمة المقاومة R الناقل الأومي و نقيس المدة الزمنية Δt الموافقة لشحن المكثفة تقريبا كلية .


أنظر الشكل-2- .

. $\Delta t = f(R)$ أ- برر نظريا شكل المنحنى البياني

ب- بالاعتماد على هذا البيان ، أوجد كل من القيمة العددية : * - للسعة C للمكثفة .

*- للمقاومة R_1 الناقل الأومى .

. القيمة العددية E للقوة الكهربائية المحركة للمولد *

Δt (10-2s)

- 5- نثبت الآن قيمة المقاومة R عند القيمة $_0$ ، بواسطة برنامج معلومتي ، تتحصل على الشكل-3- الممثل لتغيرات شدة التيار المارة في الدارة بدلالة الزمن $_{\cdot}$
 - أ- أوجد القيمة العددية لثابت الزمن au .
 - ب- أوجد القيمة العددية لـ R_0 .
 - ج- أوجد القيمة العددية لشدة التيار الابتدائي المارة في الدارة ثم أستنتج القيمة العددية E للقوة الكهربائية للمحرك .
 - $t=12.5\ ms$ المخزنة في المكثفة في اللحظة المخزنة عند المخزنة في المكثفة المخزنة في المكثفة المخزنة المكثفة المخزنة المكثفة المك