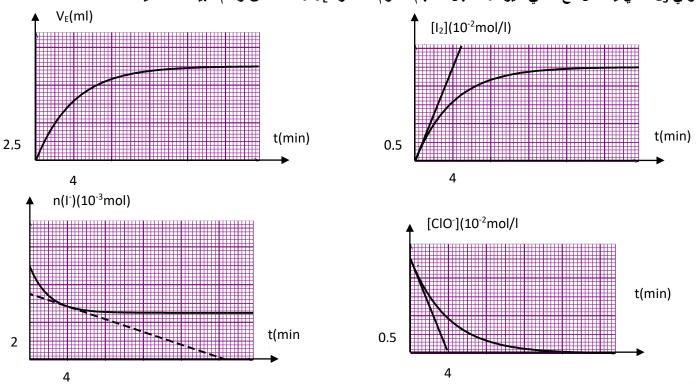
ادة العلوم الفيزيائية	
2021/03/01	المستوى السنة الثالثة رياضيات + علوم تجريبية

التمرين الأول (8 نقاط)

نمزج في اللحظة t=0 محلولا S_1 مجمه $V_1=50$ ml من ماء جافيل ($V_1=50$ ml مع محلولا S_1 مع محلولا $V_2=50$ ml من يود البوتاسيوم ($V_1=50$ ml) تركيزه المولي $V_2=50$ ml في وسط حامضي


ننمذج التحول الكيميائي بمعادلة التفاعل التالية:

$$CIO^{-} + 2I^{-} + 2H^{+} = CI^{-} + I_{2} + H_{2}O$$

المدة: 2 سا

نقسم المزيج في 10 أنابيب إختبار و نضع هذه الانابيب في حمام مائي درجة حرا ترته ثابتة °40°.

نتابع هذا التحول الكيميائي زمنيا عن طريق المعايرة اللونية باستخدام محلول ثيو كبريتات الصوديوم ($^{-2}$ $^{-2}$ $^{-2}$ $^{-2}$ $^{-2}$ الذي يتفاعل مع ثنائي اليود . نسجل الحجم اللازم للتكافؤ $^{-2}$. تمكنا من رسم البيانات التالية

1/ أنشىء جدول تقدم التفاعل

2/ أكتب معادلة تفاعل المعايرة إذا علمت أن الثنائيتين الداخلتين في التفاعل هما (-1/1), $(-1/2)^2 / (-1/6)^2 / (-1/6)^2$

 V_{E} و التركيز C_{3} و التكافؤ أوجد العلاقة بين تقدم التفاعل X_{t} و التركيز و حجم التكافؤ

4/ إعتمادا على المنحنيات البيانية:

 C_2 و C_1 أوجد التركيز المولى الابتدائى للمتفاعلين C_1 و C_2

4.2/ أثبت أن المزيج ليس في شروط ستوكيومتري

4.3/ إستنتج المتفاعل المحد و قيمة التقدم الاعظمي xmax

4.4/ أعطى التركيب المولي للمزيج التفاعلي في نهاية التفاعل

 $[l_2]_{1/2} = \frac{[[l_2)f}{2}$, $n(l^-)_{1/2} = \frac{n_0(l^-)}{2} + \frac{n_f(l^-)}{2}$: in this is the second of the s

أحسب قيمة $t_{1/2}$ أحسب تركيز C_3 لثيوكبريتات الصوديوم

 $v_{\text{vol}} = \frac{d[I_2]}{dt}$: عرف السرعة الحجمية للتفاعل ثم أثبت أن انها تكتب على الشكل (4.7 عرف السرعة الحجمية للتفاعل ثم أثبت أن انها تكتب على الشكل

4.8/ أحسب السرعة الحجمية للتفاعل في اللحظة t=0 ثم إستنتج سرعة التفاعل و سرعة إختفاء شوارد -CIO في تلك اللحظة

التمرين الثاني (6 نقاط)

أول جهاز منظم للنبض القلبي كان يعمل بمولد (pile) طاقته منتهية و لكن حاليا يستعمل مولد طاقته كبيرة جدا هذه الطاقة تتحرر جراء تفكك أنوية البلوتنيوم 238 ذات ثابت الاشعاعي ٦ إلى أنوية اليورانيوم 234 .

1/ أكتب معادلة التفكك الاشعاعي للبلوتنيوم 238

2/ البيان المعطى يمثل النشاط الاشعاعي A لعينة من البلوتنيوم موجود في جهاز منظم القلب بدلالة عدد الانوية المتفككة 'N

A (10¹⁰) Bq

. λ و A_0 النشاط الاشعاعي و عدد الانوية المتفككة لعينة البلوتنيوم 238 بدلالة A_0 و λ

ب/ باستغلال البيان حدد

- النشاط الاشعاعي الابتدائي A₀
- ثابت التفكك λ لنواة البلوتنيوم 28
- عدد الانوية No لعينة البلوتنيوم 238

3/ أحسب الطاقة المحررة الكلية ناتجة عن هذا التفاعل النووي

4/ إذا كانت إستطاعة هذا المولد الكهربائي هي P= 0,56W و هذا الجهاز

يعمل بمردود %r=60

أوجد المدة الزمنية لصلاحية جهاز منظم القلب بالسنوات

نووي P= و هذا الجهاز N'(10²⁰)noyaux

⁴ Не	²³⁴ ₉₂ U	²³⁸ Pu	رمز النواة
4.0015	233,99394	237,9995	الكتلة بـ

التمرين الثالث (6 نقاط)

في حصة للاعمال المخبرية إقترح الأستاذ على تلاميذه مخطط الدارة الممثل في الشكل لدراسة ثنائي القطب RC. تتكون الدارة من العناصر الكهربائية التالية

 $R=R'=5k\Omega$ مولد توتره الكهربائي ثابت E=12V ثابت

مكثفة (غير مشحونة) سعتها C=1,0μF

1/ نجعل البادلة في اللحظة t=0 على الوضع (1)

1.1/ ماذا يحدث للمكثفة

2.1 كيف يمكن عمليا مشاهدة التطور الزمني للتوتر الكهربائي uAB

 $RC \frac{du_{AB}}{dt} + u_{AB} = E$: بين أن المعادلة التفاضلية التي تحكم إشتغال الدارة الكهربائية عبارتها : 3.1

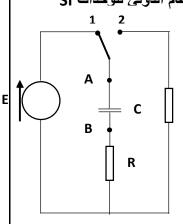
4.1/ أعط عبارة الثابت المميز للدارة و بين باستعمال التحليل البعدي أنه يقدر بالثانية في النظام الدولي للوحدات ١١

5.1 / بين أن المعادلة التفاضلية السابقة (1- ج) تقبل العبارة

 $u_{AB} = E (1 - e^{-t/\tau})$

 $au_{AB} = f(t)$ أرسم شكل المنحنى البياني الممثل للتوتر الكهربائي $u_{AB} = f(t)$ و بين كيفية تحديد

7.1/ قارن بين قيمة التوتر u_{AB} في اللحظة $t=5\tau$ و t=0 ماذا تستنتج


2/ بعد إنتهاء من الدراسة السابقة نجعل البادلة في الوضع 2

1.2/ ماذا يحدث للمكثفة

2.2/ أحسب قيمة الطاقة الاعظمية في الدارة الكهربائية

 $t=\frac{\tau}{2}$ ما هي الطاقة المحولة بفعل جول في اللحظة +3.2

2.4/ أوحد اللحظة التي تكون فيها الطاقة المخزنة تساوي إلى الربع من طاقتها الاعظمية

R'

مؤسسة التربية و التعليم الخاصة منوسط منوسط المعالق التربية والتعليم الخاصة التربية والتعليم الخاصة التعليم الخاصة التعليم التع

تصحيح الاختبار في مادة العلوم الفيزيائية للسنة الثالثة ع ت + ر

<u>التمرين الأول</u> 1/ حده لى التقدم

CIO-	+	2I ⁻	+	2H⁺	I	Cl⁻	+	l ₂	+	H ₂ O
n ₁		n ₂		بعض		0		0		
n₁-y		n ₂ -2x				Y		Y		

2S ₂ O ₃ ²⁻	+	l ₂	=	S ₄ O ₆ ²⁻	+	2l ⁻
n ₁		n_2		0		0
n2v.		n _a -v _e		V-		V-

2/ كتابة معادلة المعايرة

(من جدول التقدم) = $xn_2 = n(I_2)$ و $= C_3V_E n_1 = n(S_2O_3^{2-})$ = حيث $= \frac{n_2}{1} \frac{n_1}{2}$: من جدول التقدم)

$\frac{1}{2}$ C ₃ V _E	→	10ml
х —	↑	100 ml

$$x=5C_3V_E$$
 2 ميث $C_3V_{E2} = \frac{1}{2}$ 2 ميث $C_3V_{E3} = \frac{1}{2}$ 2 ميث $C_3V_{E4} = \frac{1}{2}$ 3 من البيان .و $C_3V_{E3} = \frac{1}{2}$ 4 من البيان .و $C_3V_{E3} = \frac{1}{2}$ 4 من البيان .و $C_3V_{E3} = \frac{1}{2}$ 4 من البيان .و

$$C_1 = 0.05$$
mol/l و بعد الحساب نجد [CIO $^-$] = 2.5 10^{-2} mol/l من البيان [CIO $^-$] = $\frac{C_1 V_1}{V_T}$

إذا كان المزيج ستوكيومتري :
$$\frac{n_2}{2} = \frac{n_2}{2}$$
 بعد التعويض نجد أن المزيج ليس في الشروط ستكيومتري

$$x_f = 2.5 \ 10^{-3} \ mol$$
 . $n_1 - x_f = 0$. $n_2 - 2x_f = 0$. $n_1 - x_f = 0$. $n_1 - x_f = 0$. $n(ClO^-)_f = n_1 - x_f = 0$. $n(I^-) = n_2 - 2x_f = 5.10^{-3} mol$. $n(Cl^-)_c = 2.5 \ 10^{-3} mol$. $n(I_2) = x = 2.5 \ 10^{-3} mol$. $n(I_3) = x = 2.5 \ 10^{-3} mol$. $n(I_4) = x = 2.5 \ 10^{-3} mol$. $n(I_5) = x = 2.$

 $t_{1/2} = 2min$

$$x=5C_3V_E = 0.04 \text{mol/l}$$
 $= \frac{2.5 \cdot 10^{-3}}{5.12.5 \cdot 10^{-3}}C_3 = \frac{X}{5V_E}$

نعرف السرعة الحجمية كما يلي: هو مقدار تغير تقدم التفاعل في وحدة الزمن الموجودة في وحجة الحجوم

$$V_{VOL} = \frac{1}{V} \frac{dx}{dt}$$
, $n(I_2) = x_2 = \frac{d[I_2]}{dt} = \frac{1}{V} \frac{d([I_2]V)}{dt}$ $V_{VOL} = \frac{1}{V} \frac{dn(I_2)}{dt}$

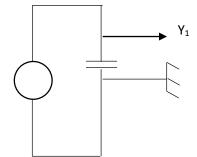
 $V_{VOL} = tg\alpha = 1.25 \cdot 10^{-3} \text{mol/l.min}$

$$v = \frac{dx}{dt}$$
 $v = V_T V_{vol} = 0.1 \text{ x} 1.25 \text{ } 10^{-3} = 1.25 \text{ } 10^{-4} \text{mol/mil}$.: $v = \frac{dx}{dt}$

$$V(CIO^{-}) = -\frac{dn(ClO^{-})}{dt} = \frac{dx}{dt} = 1.25 \text{ } 10^{-4} \text{mol/min}$$

التمرين الثاني

 $N=N_0-N'$ نعلم أن $N=N_0=N$ حيث $N=N_0=N$ هو عدد الانوية المتبقة و من جهة أخرى نعلم أن $N_0=N+N'$ حيث $N_0=N_0=N+N'$ و $N=N_0-N'$ هو $N=N_0-N'$ من البيان $N=N_0-N'$ $N=N_0-N'$ و $N=N_0-N'$ هو $N=N_0-N'$ من البيان $N=N_0-N'$ $N=N_0-N'$


$$N_0 = \frac{A_0}{\lambda} N_0 = 5.25 \ 10^{20} \text{noy}$$
 $Q_0 = \lambda N_0$

$$E_{Lib}$$
= ($m_f - m_i$) $C^2 = 3.78 \, MeV$ الطاقة المحررة

$$E_{TIIB} = 3.78.5.25 \ 10^{20} = 19.84 \ 10^{20} \ MeV = 19.84 \ 10^{20}.1.6 \ 10^{-13} = 31.74 \ 10^{7} \ j$$

$$r = \frac{E_{ele}}{E_{Nu}} E_{ele} = r.E_{Nuc} = 0.6.31.74 \cdot 10^7 = 19.04 \cdot 10^7 j$$

$$P = \frac{E_{ele}}{t}t = \frac{E_{ele}}{P} = \frac{19.04 \cdot 10^7}{0.56} = 3.8 \cdot 10^8 \text{s} = 10.78 \text{ans}$$

التمرين الثالث

1/ شحن المكثفة 2/ نوصل الراسم الاهتزاز المهبطي الى طرفي المكثفة كما هو موضح في الرسم

$$E = u_R + u_c = Ri + u_c = RC \frac{du_c}{dt} + u_c$$
بتطبیق قانون جمع التوترات

$$t = 5\tau u_c = E(1 - e^{-5}) = 0.993E$$
 $u_c = E(1 - e^{-\frac{t}{\tau}})$. RC = (s) τ

E t =5 τ لما E t =5 عيساوي بتقريب إلى

/2 البادلة في الوضع 2

التفريغ المكثفة

$$E_C = 72 \mu$$
 j , $u_c = E$ lal ladie lladie $E_C = \frac{1}{2}$ C u_c^2

$$0.72-0.26=0.46 \mu$$
 j جول هي جول هي الطاقة المحولة بفعل جول هي $E_{C}=0.26~\mu$ j $\frac{1}{2}=t$ الطاقة المخزنة لما

 $t = \tau \ln 2$