اختبار الفصل الأول في العلوم الفيزيائية

التمرين الأول:

التفكك الذاتي للماء الأكسجيني تحول كيميائي بطيء يمكن تسريعه بوسيط مثل شوارد الحديد الثلاثي $Fe_{(aq)}^{3+}$ ،ينمذج هذا التحول التفكك الذاتي للماء الأكسجيني تحول كيميائي بطيء يمكن تسريعه بوسيط مثل شوارد الحديد الثلاثي $2H_2O_{2(aq)}=O_{2(g)}+2H_2O_{(\ell)}$

نتابع التحول بالطريقة الفيزيائية قياس الضغط $P_{(O_2)}$ لغاز ثنائي الأكسجين O_2 الناتج خلال الزمن، حيث حضر وسط التفاعل عند ورق $V_0=20m$ المحظة $C_0=5\times 10^{-1}mol\cdot L^{-1}$ واخل دورق $V_0=20m$ من الماء الأكسجيني تركيزه المولي $V_0=0.25$ داخل دورق موصول بمانومتر نسبي $V_0=0.25$ يتجمع غاز ثنائي الأكسجين $V_0=0.25$ المنطلق خلال الزمن في الحيز الفارغ من الدورق $V_0=0.25$ عند حرارة ثابة $V_0=0.25$ المبين في الشكل $V_0=0.25$ المبين في الشكل $V_0=0.25$ المبين في التحربة? $V_0=0.25$ ما المقصود بالوسيط، ما نوع الوساطة في التحربة?

ب/ ما هي ايجابية متابعة تحول كيميائي بالطرق الفيزيائية؟

-2 أ/ حدد الثنائيتين $(Ox/\operatorname{Re} d)$ الداخلة في التفاعل ثم أكتب المعادلتين النصفيتين للأكسدة والإرجاع.

. X_f limit steel rate of the limit and limit is X_f .

R و (درجة الحرارة) و θ (الحيز الفارغ من الدورق)، θ (درجة الحرارة) و R (الحيز الفارغ من الدورق)، θ (درجة الحرارة) و R -3 اوجد عبارة تقدم التفاعل R بدلالة: R

. $t_1=20\,\mathrm{min}$ عين التركيز المولي $[H_{\,2}O_{\,2}\,]_{20}$ للماء الأكسجيني عند اللحظة

 $. \ V_0$ السرعة الحجمية للتفاعل ثم أكتب عبارتها بدلالة: $R \cdot \theta \cdot V \cdot P_{(O_2)}$ و حجم محلول الماء الأكسجيني $v_{vo\ell}$ السرعة الحجمية للتفاعل ثم أكتب عبارتها بدلالة: $t_1 = 20 \, \mathrm{min}$ عند نفس اللحظة $v_{vo\ell}$ احسب قيمة $v_{vo\ell}$ عند اللحظة $v_{vo\ell}$ عند نفس اللحظة به المحلة الم

5- نهتم بدراسة حركية 2 التفاعل السابق المتابع زمنيا، وبنفس التركيب المولي السابق لمزيج التفاعل نحقق (3) تجارب في ظروف مختلفة:

. من الماء المقطر. $20^{\circ}C$ مع اضافة حجم 20mL من الماء المقطر.

. $20^{\circ}C$ في درجة الحرارة 02° .

 $.30^{\circ}C$ بي درجة الحرارة: $.30^{\circ}$

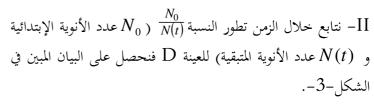
متابعة تطور كمية مادة الماء الأكسجيني $n_{H_2O_2}$ للتجارب السابقة خلال الزمن مكنت من رسم المنحنيات البيانية: c,b,a المبينة في الشكل -2.

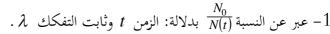
أ/ عين المنحني البياني المناسب لكل تجربة.

ب/ من مقارنة ظروف كل تجربة أبرز العوامل الحركية المدروسة.

ج/ بالإعتماد على المنحنيات أذكر أهم المقادير الفيزيائية التي تؤثر عليها هذه العوامل الحركية.

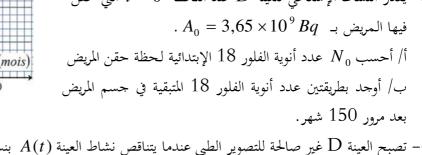
T(°k)=273+ heta(°c) ، $1L=10^{-3}m^3$ التحويل: R=8,31SI التحويل R=8,31SI

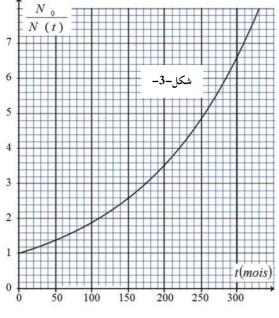

2: العوامل المؤثرة على سرعة التفاعل.


1: جهاز قياس الضغط للغاز الناتج في الفراغ من الدورق.

التمرين الثاني:

ا خدد في تركيب الأورام السرطانية نسبة مرتفعة من عنصر الفلور F ، لذا لتحديد موقع الورم ومتابعة إنتشاره في حسم مريض بتقنية - ا التصوير الطبي، يتم حقن المريض عند اللحظة t=0 بجرعة (عينة) D بها كمية من أنوية نظير الفلور F المشع، الذي يصدر n الى نترون بتحويل بروتون p


- 1- ما المقصود بـ "نواة مشعة"
- . $_{7}N,_{8}O,_{10}Ne,_{11}Na$: التنوك التنووي للنواة $_{9}^{18}F$ ثم تعرف على النواة المتولدة من بين الأنوية التالية $_{7}N,_{8}O,_{10}Ne$



التفكك الإشعاعي
$$\lambda$$
 بوحدة $t_{1/2}$. s^{-1} عسب ثابت λ التفكك الإشعاعي λ

يقدر النشاط الإشعاعي للعينة D عند اللحظة t=0 التي حقن -3

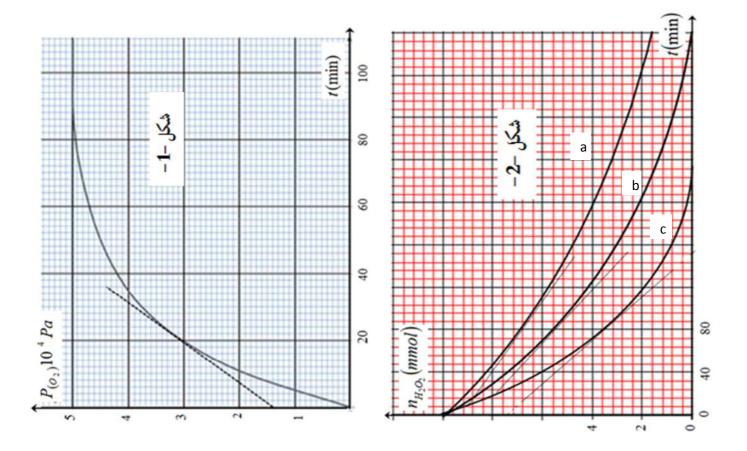
. A_0 عنير صالحة للتصوير الطبي عندما يتناقص نشاط العينة A(t) بنسبة 80% من النشاط الإبتدائى -4 $t = \frac{t_{1/2}}{\ln 2} \cdot \ln \left(\frac{A_0}{A(t)} \right)$ يعطى بالعلاقة: 80% يعطى بالعلاقة: بين أن الزمن اللازم لتناقص نشاط العينة بنسبة

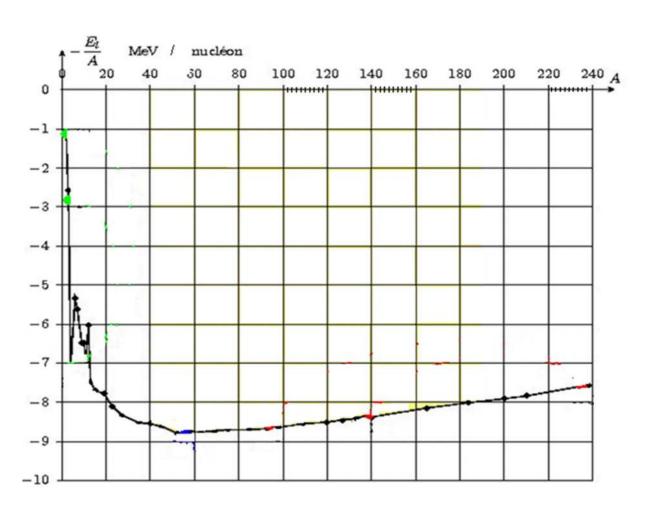
التمرين الثالث:

ينتج في المفاعلات النووية بدون قصد عدة نظائر اصطناعية مشعة، وعادة ينتج أحد نظائر البلوتونيوم الإصطناعية القابل للإنشطار $^{239}_{94}Pu + ^{1}_{0}n \rightarrow ^{135}_{52}Te + ^{102}_{7}Mo + x_{0}^{1}n$ النووي وفق المعادلة:

1- أ/ عرف تفاعل الإنشطار النووي.

z و x و أين الإنحفاظ جد قيمة كل من x


 $(102 \ Mo^{-1})$ عرف طاقة الربط النووية E_ℓ ثم احسب طاقة ربط نواة المولبيدان -2 عرف طاقة الربط النووية .


9- أ/ قارن استقرار النواتين المتولدتين Te , Mo مع نواة البلوتونيوم 239، أيهما أكثر استقرار -3. Te , Mo , Pu : موقع الأنوية -4 موقع المرفق في الشكل -4 $\left(rac{230}{94}\,Pu
ight)$ ج $\left(rac{230}{94}\,Pu
ight)$ أحسب الطاقة المحررة عن انشطار نواة البلوتونيوم

m=10~g من البلوتونيوم m=10~g من البلوتونيوم -4

 $E_{\ell}\binom{135}{52}Te$ = 1130 ,655 MeV ، $m\binom{102}{52}Mo$ = 101 ,8873 u :المعطيات: $\frac{E_{\ell}}{A} \left(^{239}_{94} Pu \right) = 7,589 \text{ MeV}/_{nucl\acute{e}on}$

 $N_A = 6.02 \times 10^{-23} \ mol^{-1} \cdot m \binom{1}{0} n = 1.0087 \ u \cdot m \binom{1}{1} p = 1.0073 \ u \cdot 1u = 931 \ .5^{MeV}/c^2$

