

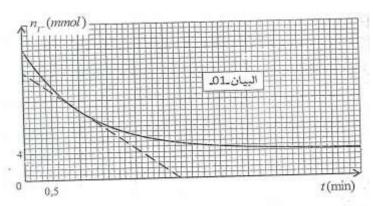
المستوى:الثالثة ثانوي علوم تجريبية ديسمبر 2019 اختبار الثلاثي الأول في العلوم الفيزيائية المدة: 2 سا

التمربن الأول: (7 نقاط)

ظل تاريخ الطب النووي مرتبطا بما يحققه تطور الفيزياء النووية، ففي حالات متعددة يعتمد هذا النوع من الطب عن حقن مواد مشعة في جسم مريض، ويعتبر النظير $^{99}_{43}$ Tc للتيكنيسيوم من بين الأنوية المستعملة في هذا المجال نظرا لقصر حياته حيث يقدر نصف عمره بـ $t_{1/2}$ ، إضافة إلى تكلفته المنخفضة وكونه أقل خطورة.

- $^{97}_{43}\, {\rm Tc}$ و $^{99}_{43}\, {\rm Tc}$ و $^{10}_{43}\, {\rm Tc}$ و $^{10}_{43}\, {\rm Tc}$ عرف النظير ، اعط تركيب نواة النظير ،
- . 2 يتم الحصول على النظير $^{99}_{43}$ Tc عن طريق قذف $^{96}_{42}$ Mo عن النظير $^{99}_{43}$ Tc عن طريق قذف $^{96}_{42}$ Mo $^{96}_{42}$ Mo $^{97}_{1}$ H $^{97}_{2}$ X + $^{97}_{43}$ Tc دلة التفاعل المنمذج لهذا التحول النووي هي:
 - أ. هل هذا التفاعل النووي مفتعل أو تلقائ؟ علل.
 - ب.بذكر بقانوني صودي، اوجد قيمتي كل من A, Z
 - $\frac{A}{Z}$ X على الجسيمة
 - 3. يتم الحصول على النظير Tc بتفكك Mo في تقائيا.
 - أ. أكتب المعادلة هذا التفكك مبينا نمط هذا النشاط الاشعاعي.
- $A_0 = 555 {
 m Mbq}$ ين الإشعاعي الابتدائي $^{99}_{43} {
 m Tc}$ على النظير 4. حقن مريض بحقنة تحتوي على النظير
 - $\lambda = 3.21 \; \mathrm{x} \; 10^{-5} \mathrm{s}^{-1}$ هو $^{99}_{43} \; \mathrm{Tc}$ أ. تحقق من أن ثابت النشاط الاشعاعي للتيكنيسيوم
 - ب.أحسب عدد أنوية الابتدائية N_0 التي حقن بها المريض.
 - ج. أوجد قيمة m_0 الكتلة الابتدائية Tc التيكنيسيوم التي حقن بها المريض.
- t_1 عند اللحظة t_1 تناقص نشاط العينة في جسم الشخص إلى 63% من قيمته الابتدائية، حدد اللحظة t_1

$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ يعطى:


التمرين الثاني: (7 نقاط)

نمزج عند اللحظة t=0، حجما t=0 محلول مائي لبيروكسوديكبريتات البوتاسيوم t=0 حجما t=0 محلول مائي لبيروكسوديكبريتات البوتاسيوم t=0، حجم t=0 محلول مائي ليود البوتاسيوم t=0 تركيزه المولي t=0 تركيزه المولي t=0 محلول مائي ليود البوتاسيوم t=0 تركيزه المولي t=0 المتبقية في الوسط التفاعلي في لحظات زمنية مختلفة، فتحصلنا على البيان t=0 نتابع تغيرات كمية مادة t=0 المتبقية في الوسط التفاعلي في لحظات زمنية مختلفة، فتحصلنا على البيان t=0

- و $(S_2O_{8(aq)}^{2-} / SO_{4(aq)}^{2-})$ و $(S_2O_{8(aq)}^{2-} / SO_{4(aq)}^{2-})$ و $(S_2O_{8(aq)}^{2-} / SO_{4(aq)}^{2-})$ و $(I_{2(aq)}/I_{(aq)}^{-})$
 - أ. أكتب معادلة تفاعل الأكسدة الارجاعيةالمنمذجة للتحول الكيميائي الحاصل.
 - ب. أنجز جدول تقدم التفاعل.
 - 2. إعتمادا على البيان:
 - أ. استنتج التركيز المولى C_2 لمحلول يود البوتاسيوم.
 - ب. حدد المتفاعل المحد علما أن التفاعل تام.
 - ج. استنتج قيمة التقدم الأعظمي Xmax.
 - t = 1min عند اللحظة المود ($I_{(aq)}^-$) عند اللحظة عند اللحظة .t

t=1min ب – أوجد قيمة الحجم الكلي V للوسط التفاعلي علما أن قيمة السرعة الحجمية للتفاعل عند اللحظة $V_{vol}=9.1 \times 10^{-3} \; mol. L^{-1}.min^{-1}$

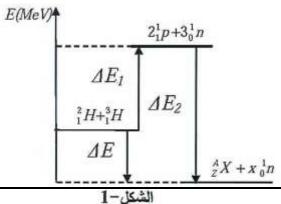
- C_1 ج- استنتج قيمة الحجم V_1 لمحلول بيروكسوديكبريتات البوتاسيوم وتركيزه المولي
 - $t_{1/2}$ أ عرف زمن نصف التفاعل $t_{1/2}$.
- ب بين أن كمية مادة شوارد اليود $(t_{1/2})(t_{1/2})$ عند اللحظة $t_{1/2}$ تعطى بالعلاقة

$$n(I^-)_{t^{1/2}} = \frac{n^0(I^-) + n_f(I^-)}{2}$$

حيث: $n_0 (I^-)$ هي كمية مادة شوار د اليود الابتدائية

في الوسط التفاعلي، n_{f} (I^{-})، هي كمية مادة شو ارد اليود في الوسط التفاعلي عند نهاية التفاعل.

ج استنتج قيمة _{1/2}بيانيا.


التمرين الثالث: (6 نقاط)

انطلق برنامج البحث(international thermonucléaire expérimental reactor) الدراسة الاندماج

النووي لنظيري الهيدروجين 3_1 , 3_1 وذلك من أجل التأكد من 3_1 الناقة من الأذراء الناقة من الناقة من الأذراء الناقة من الناقة من الأذراء الناقة من الأذراء الناقة من الأذراء الناقة من النا

الامكانية العلمية لإنتاج الطاقة عبر الاندماج النووي.

 $^{2}_{1}$ H معادلة الاندماج النووي بين الديتوريوم $^{2}_{1}$ H والتربتيوم $^{3}_{1}$ H ونيترونا.

Page 2 sur 6

- ب يتعلق زمن نصف العمر ب:
- عدد الأنوية الابتدائية Nاللنظير المشع.
 - درجة حرارة العينة المشعة.
 - نوع النظير المشع.

إختر الإجابة الصحيحة من بين الاجابات السابقة:

- . عرف طاقة الربط للنواة ($^{A}_{Z}X$)، ثم أكتب عباراتها.
 - ب أحسب طاقة الربط للنواة وطاقة الربط لكل نوية:
- . النواة الأكثر استقرارا. MeV ، بـ النواة الأكثر استقرارا.
- 2 H , 3 H یمثل الحصیلة الطاقویة لتفاعل اندماج نظیری الهیدروجین 3 H , 3 H .
 - أ- أحسب مقدار الطاقة المحررة عن تفاعل الاندماج الحادث.
 - 3 ب احسب مقدار الطاقة المحررة عن اندماج 2 امن 2 و 3 من 3 من 3

يعطى:

M
$$\binom{1}{0}$$
n) = 1,00866u; m $\binom{1}{0}$ p) = 1,00728u; m $\binom{2}{1}$ H) = 2,01355u; m $\binom{3}{1}$ H) = 3,0155u; m $\binom{4}{2}$ He) = 4,0015u; 1u = 931,5 $\frac{\text{MeV}}{\text{C}^2}$; N_A = 6,02 X 10^{23} mol⁻¹

بالتوفيق

التصحيح النموذجي

$$99$$
تركيب النظير 70.5 عدد البروتونات : 43 ، عدد النيترونات : 56 عدد البروتونات : 0.5)

(ن0.75)
$$\beta^{-1}$$
 نمط الإشعاع $Z=-1$ نمط $A=0$ نمط $A=0$ نمط الإشعاع $Z=-1$ نمط الإشعاع $Z=-1$ نمط الإشعاع $Z=-1$ نمط الإشعاع $Z=-1$ نمط الإشعاع $Z=-1$

$$N_0 = \frac{A_0}{6} = \frac{555 \times 10^6}{3.21 \times 10^{-5}} = 172.9 \times 10^{11}$$
 ب_ نویة $N_0 = \frac{A_0}{6} = \frac{555 \times 10^6}{3.21 \times 10^{-5}} = 172.9 \times 10^{11}$

(1)
$$m_0 = \frac{N_{0.M}}{N_A} = \frac{172.9 * 10^{11} * 99}{6.02 * 10^{23}} = 28.43 * 10^{-10} \text{ g } \underline{}$$

(1)
$$t_1 = \tau = \frac{1}{h} = \frac{1}{3.21 \times 10^{-5}} = 31152.64 \text{s} \approx 8.65 \text{ h}$$

التمرين الثانى: (7نقاط)

$$(0.25)$$
 (ارجاع) (0.25) (0.25) $(1-20)$ (0.25) $(1-20)$ $($

ب جدول التقدم (0.5ن)

معادلة التفاعل	S ₂ O ₈ ²⁻	+	2l ⁻	=	2SO ₄ ²⁻	+ 2	
الحالة الإبتدائية	C_1V_1		C_2V_2		0	0	
الحالة الإنتقالية	C_1V_1 -x		C_2V_2 -2x		2x	2	×
الحالة النهائية	C ₁ V ₁ -Xn	n	C ₂ V ₂ -2Xm	1	2Xm		Xm

 $n_f(I^-)$ =4mmol ب المتفاعل المحد من البيان نجد

(
$$0.5$$
) $S_2O_8^{2-}$ إذن المتفاعل المحد هو

ج_ قيمة التقدم الأعضمي:

$$n_f(I^-) = C_2 V_2 - 2Xm \rightarrow Xm = \frac{C_2 V_2 - n_f(I^-)}{2}$$

$$(0.5)$$
 Xm = $8*10^{-3}$ mol

3-أ_ سرعة إختفاء شوارد (-I) عند اللحظة 1 دقيقة

$$V_{(I^{-})} = \frac{dn(I^{-})}{dt} = \frac{(0-16)10^{-3}}{5.6*0.5-0} = 5.71 \text{ Mmol } .min^{-1}$$

$$V_{\text{VOL}} = \frac{1}{V_T} \frac{dX}{dT}$$
, $n(I^-) = n_0(I^-) - 2x$ _ \rightarrow

$$\frac{dn(I^{-})}{dt} = -2\frac{dx}{dt} \rightarrow V_{VOL} = \frac{V_{(I^{-})}}{2V_{T}} \rightarrow V_{T} = 313.7 \text{ml}$$

$$v_1 = V_T - V_2 = 113.7 \text{ ml}$$
 _=

 C_1 — Luna

(ن.0.5)
$$C_1V_1$$
-Xm =0 $\rightarrow C_1 = \frac{8*10^{-3}}{0.1137} = 0.07 \text{ mol } *l^{-1}$ لدينا

4_ زمن نصف العمر: هو الزمن الازم لبلوغ تقدم التفاعل نصف تقدمه الأعضمي او النهائي (0.5ن)

$$x_{(t^{1/2})} = \frac{xm}{2} \rightarrow t = t_{1/2}$$

$$n_{(I^{-})} = \mathsf{n_0} - 2\mathsf{x} \!\!\to\!\! n_{(I^{-})_{\mathsf{t}^{1/\!\!/}}} \!\!=\!\! \mathsf{n_0} - \mathsf{xm/2}$$
 لدينا

(
$$\dot{0}$$
1)
$$n_{(I^{-})t_{1/2}} = \frac{n_{0+n_{0-2Xm}}}{2} = \frac{n_{0(I^{-})+n_{f}}(I^{-})}{2}$$
($\dot{0}$ 0.25)
$$n(I^{-})t_{1/2} = \frac{4+20}{2} = 12$$
mmol

Page 5 sur 6

 $t_{1/2}$ =0.8min بالاسقاط نجد

التمرين الثالث: (6نقاط)

(
$$0.1.5$$
) ${}^3_1H + {}^2_1H \longrightarrow {}^4_2X + {}^1_0n$ Albert ${}^3_1H + {}^2_1H \longrightarrow {}^4_2X + {}^1_0n$ A $= (2+3)-1=4$ Equation $(2+3)-1=4$ By $(2+3)-1=4$

(0.25)ن