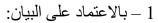
الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية: لولاية الاستاذ:

ثانوية: يوم: 2017/05/15

شعبة : علوم تجريبية بيضاء

المادة: العلوم الفيزيائية


الموضوع 01

الجزئ الاول: على 13 نقطة (الفيزيــاء)

التمرين الاول: (07 نقطة)

I. دراسة حركة جسم ينزلق على طريق مائلة :(05 نقاط)

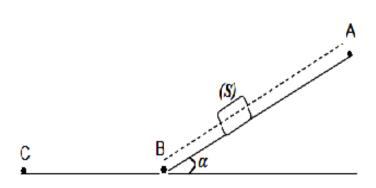
ينزلق جسم صلب (S) كتلته m=100g على طول مستو مائل عن الأفق بزاوية $\alpha=20^\circ$ وفق المحور \overline{AB} (انظر الشكل). قمنا بالتصوير المتعاقب بكاميرا رقمية وعولج شريط الفيديو ببرمجية (Aviméca) بجهاز الإعلام الألي وتحصلنا على رسم البيان v=f(t).

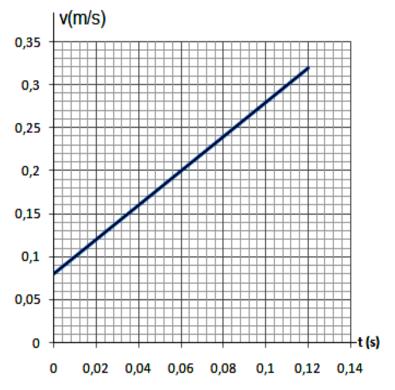
أ - بين طبيعة حركة (S).

a ب - استنتج القيمة التجريبية للتسارع

t=0 استنتج قيمة السرعة v_0 في اللحظة t=0

د - احسب المسافة المقطوعة بين اللحظتين:


$$.(t_2 = 0.08s) t_1 = 0.04s)$$


2 – بفرض أن الاحتكاكات مهملة:

أ — بتطبيق القانون الثاني لنيوتن أوجد العبارة الحرفية للتسارع a_0 ثم احسب قيمته.

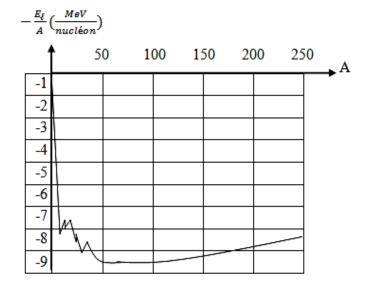
 a_0 بین a_0 بین a_0

 \vec{f} من سؤال 1 و سؤال 2 أوجد شدة القوة ألم المنمذجة للاحتكاكات على المستوى المائل.

II. دراسة حركة جسم على طريق افقى خشن: (02) نقاط)

C الى النقطة B من نقطة C الى النقطة والنقطة C الى النقطة المريق الأفقى عند اللحظة والمريق النقطة C

- 1- كم هي الطاقة الحركية عند النقطة B?
- 2- مثل القوة المطبقة على الجسم على هذا الطريق ؟
 - 3- اعط عبارة التسارع a?
- 4- اذا علمت ان الجسم يتوقف عند النقطة C ماهي قيمة قوة الاحتكاك الازمة لذلك ؟

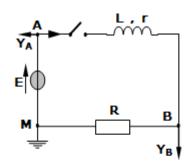

 $sin 20^{\circ} = 0.34$ ؛ $g = 10 \text{ m.s}^{-2}$

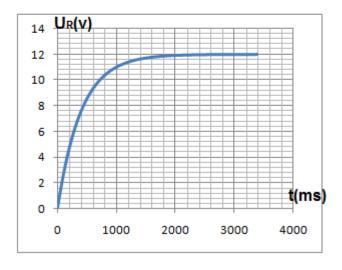
التمرين الثاني : (06 نقطة)

المعطيات:

I. دراسة طاقة محررة من تفاعل بين بين الدوتريوم والتريتيوم: (03 نقاط)

- 1- التفاعل بين الدوتريوم والتريتيوم ينتج نواة 4He ونيترون وتحرير طاقة
 - أ- ما نوع التفاعل الحادث؟ عرفه.
 - ب- اكتب معادلة التفاعل الحادث.
 - 2- أ/ ماهو اسم المنحنى ؟ اعط تعريفه ؟
 - ب/ حدد من المنحنى السابق مجالات الأنوية القابلة للإندماج والأنوية المستقرة.
 - ${
 m E}_{-}$ أ/ اكتب عبارة طاقة الربط ${
 m E}_{\ell}$ لنواة ${
 m Z}^{A}$.
 - ΔE ب مقدرة بالطاقة المحررة ا ΔE مقدرة مقدرة مقدرة مقدرة بالطاقة المحررة ا
 - احسب قيمة هذه الطاقة المحررة مقدرة بـ MeV.




النواة	^{2}H	³ H	⁴ He
طاقة الربط (MeV)	2,22	8,48	28,29

II. دراسة وشيعة في نظام دائم مع تحديد ذاتيتها L : (03 نقاط)

تستعمل الوشيعة في عدة مجالات اهمها صناعة المحركات او صناعة المحولات الكهربائية واتصالات لذلك يتم تحديد ذاتيتها L نربط على التسلسل العناصر الكهربائية التالية:

مولد ذي توتر ثابت E=12V. وشيعة ذاتيتها L ومقاومتها $r=10\Omega$ ناقل أومى مقاومته $R=110\Omega$. انظر الشكل

- k في اللحظة t=0 نغلق القاطعة الم
- نربط راسم اهتزاز مهبطي بمدخلين Yb. Ya ماذا يمثل كل مدخل .
- i(t) أوجد المعادلة التفاضلية التي تعطي شدة التيار الكهربائي (2)في الدارة.
 - 3) كيف يكون سلوك الوشيعة في النظام الدائم؟ وما هي عندئذ عبارة شدة التيار الكهربائي I_0 الذي يجتاز الدارة؟
- باعتبار العلاقة $i = A(1 e^{-\frac{t}{\tau}})$ حلا للمعادلة التفاضلية (4) باعتبار العبارة الحرفية لكل من A و σ .
 - 5) بالاعتماد على منحنى توتر بين طرفي مقاومة اوجد قيمة ثابت زمن τ .
 - استنتج قيمة ذاتية الوشيعة L ?
 - 7) ماهي قيمة الطاقة المخزنة في نظام دائم ؟

الجزئ الثاني: على (7 نقاط) (الكمياء)

التمرين الثالث:

I. دراسة ثابت توازن لحمض كربوكسيلي pKa : (03 نقاط)

ننمذج التحول الكيميائي المحدود لحمض الايثانويك (حمض الخل) مع الماء بتفاعل كيميائي معادلته:

$$CH_3COOH_{(aq)} + H_2O_{(I)} = CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

- 1 اعط تعريفا للحمض وفق نظرية برونشتد .
- 2 ـ أكتب الثنائيتين (أساس/حمض) الداخلتين في التفاعل الحاصل.
- 3 ـ أكتب عبارة ثابت التوازن (K) الموافق للتفاعل الكيميائي السابق .
- ، $C=2,7.\ 10^{-3}\ mol\ /1$ ، و تركيزه المولي 1 / $V=100\ ml$ ، و تركيزه المولي 1 / $V=100\ ml$. وقيمة الـ $V=100\ ml$ به في الدرجة $V=100\ ml$ تساوي 3,7 .
 - 1 ـ استنتج التركيز المولي النهائي لشوارد الهيدرونيوم في محلول حمض الايثانويك .
 - x_{max} و التقدم الأعظمي x_{max} و التقدم الأعظمي x_{max} .
 - $\tau_{\rm c}$) لتقدم التفاعل . ماذا تستنتج $\tau_{\rm c}$) لتقدم التفاعل . ماذا تستنتج

4 ـ أحسب:

 $^{\circ}$ التركيز المولي النهائي لكل من $^{\circ}$ ($^{\circ}$ CH $_3$ COO) و ($^{\circ}$

. واستنتج النوع الكيميائي المتغلب في المحلول الحمضي و CH_3COOH / CH_3COO^-) واستنتج النوع الكيميائي pK_a

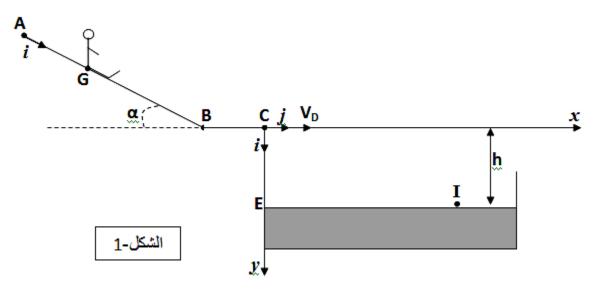
II. صناعة الاستر: (04 نقاط)

أراد تلميذان إعادة التجارب التي حققها "بيرتولي " و "سان جيل " و التي تتعلق بتفاعل الأسترة إنطلاقا من حمض الإيثانويك و الإيثانول . قام التلميذان بتحضير 10 حبابات زجاجية ثم وضعا في كل منها 0.10 mol من كل متفاعل و في الأخير بعد سد الحبابات وضعها في حمام مائي درجة حرارته 0.10 mol عند اللحظة 0 mol .

عند اللحظة t أخرجا الحبابة من الحمام المائي ، و بعد تبريدها بسرعة ، قاما بمعايرة حمض الإيثانويك المتبقي بواسطة محلول الصود بوجود الفينول فتالين . يبين الجدول التالي النتائج التي تحصلا عليها :

t (h)	0	4	10	20	40	100	150	200	250	300
n _{(حمض م} تبقي) (mmol)	100	75	64	52	44	36	35	34	33	33
τ										

- 1) ـ أكتب معادلة التفاعل المنمذج للتحول الحادث في كل أنبوبة ؟ ما هو إسم الأستر الناتج ؟
 - 2) ـ لما ذا تبرد الحبابة قبل معايرة الحمض المتبقي ؟ كيف تبرد الحبابة ؟
 - X_{max} قدم جدو لا لتقدم التفاعل ثم إستنتج التقدم الأعظمي X_{max} ?
 - 4) ـ أحسب التقدم النهائي $_{
 m X_f}$ للتفاعل في كل حبابة ؟
 - 5) ـ بعد تذكير لتعريف نسبة تقدم التفاعل 7 ، املئ الجدول ؟
- و كذلك مردود التحول ؟ au=f(t) أرسم البيان au=f(t) ثم إستنتج النسبة النهائية لتقدم التفاعل و كذلك مردود التحول ؟
 - 7) ـ إعتمادا على البيان: حدد خاصيتين تميزان التحول؟
 - $\tau=f\left(t\right)$. كيف يمكن تسريع التحول ؟ أرسم كيفيا شكل المنحنى

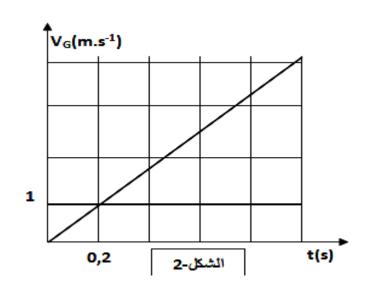

الموضوع 02

الجزئ الاول : على 13 نقطة (الفيزياء)

التمرين الاول: (07 نقطة)

III. دراسة حركة طفل ينزلق على طريق مائلة: (04.5 نقاط)

ينزلق طفل مركز عطالته G وكتلته m فوق مزلقة مسبح مكونة من جزء AB مستو مائل عن الأفق بزاوية α وجزء BC مستو أفقي يوجد على الارتفاع α من سطح ماء المسبح (الشكل-1).


المعطيات: الاحتكاكات مهملة ، CE=h=1,8m ، AB=10m ، g=10(si).

ينطلق الطفل عند اللحظة t=0 بدون سرعة ابتدائية من الموضع A، فينزلق على AB، لدراسة حركة G، نختار معلما

رز=0) عند $X_G=X_A=0$ عند (t=0). مرتبطا بالأرض حيث (A, \vec{t})

- 1) بتطبيق القانون الثاني لنيوتن، أثبت أن المعادلة التفاضلية التي تحققها الفاصلة X_G لمركز عطالة الطفل تكتب كما يلي:
 - .G استنتج طبیعة حرکه . $rac{d^2X_G}{dt^2}=\mathrm{g.\,sin}lpha$
 - 2) بعد تصوير حركة الطفل بواسطة كاميرا رقمية ومعالجة المعطيات بواسطة برنامج مناسب تم الحصول على مخطط السرعة لمركز العطالة G
 (الشكل-2).
 - أ. أوجد بيانيا قيمة التسارع a_G.

ب. حدد المدة الزمنية المستغرقة على الجزء AB.

IV. دراسة حركة طفل على شكل قذيفة :(02.5 نقاط)

يغادر مركز عطالة الطفل المزلقة في الموضع C بالسرعة $V_c=11~m.s^{-1}$ عند لحظة نعتبر ها مبدأ الأزمنة ليسقط في ماء المسبح. ندرس حركة G في المعلم (C,\vec{t},\vec{j}) .

- 1) بتطبيق قانون نيوتن الثاني، أوجد عبارة المعادلتين الزمنيتين y(t) و y(t) لحركة y(t) استنتج معادلة المسار.
 - $\overrightarrow{v_I}$ الموضع إلى سطح الماء في الموضع إلى يصل (2
 - t_I اً. تحقق أن لحظة وصول G إلى ا هي أ. تحقق أن لحظة وصول
 - .EI عبد المسافة v_I . حدد قيمة المسافة
 - 3) ينزلق طفل آخر كتلته 'm أكبر من m على نفس المسار هل تتغير قيمة المسافة EI؟ علل.

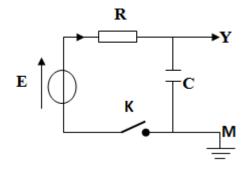
التمرين الثاني : (06 نقطة)

III. دراسة النشاط الإشعاعي: (02) نقاط)

النشاط الإشعاعي ظاهرة عفوية لتفاعل نووي.

- 1) البيكرال هي وحدة القياس المستعملة في النشاط الإشعاعي، عرف البيكرال.
- γ يفكك نواة الإيريديوم $^{192}_{77}Ir$ يعطي نواة البلاتين $^{192}_{78}Pt$ المشعة أيضا. يصاحب هذا التفكك إصدار للإشعاع (2
 - اكتب معادلة تفكك نواة الإيريديوم، موضحا النمط الإشعاعي الموافق لهذا التحوّل.
 - فسر إصدار الإشعاع γ خلال هذا التحوّل.
 - $A=3,4\times10^{14}$ Bq من الإيريديوم هو 1g النشاط الإشعاعي لـ 1g
 - جد عدد أنوية الإيريديوم N الموجودة في 1g من العينة.
 - احسب $t_{1/2}$ نصف العمر للإيريديوم.

IV. دراسة خصائص مكثفة: (04) نقاط)


قصد معرفة سعة مكثفة نشحنها وهي تحتوي على قيمة 2V مشحونة بها من قبل ، سعتها (C)، نربطها على التسلسل مع العناصر الكهربائية التالية:

- مولد كهربائي ذو توتر ثابت E=5V مقاومته الداخلية مهملة.
 - . Left ومى مقاومته Ω Ω E=500 د اطعة

لإظهار التطور الزمني للتوتر الكهربائي Uc(t) بين طرفي المكثفة.

نصلها براسم اهتزاز مهبطي ذي ذاكرة. الشكل-4.

نغلق القاطعة K في اللحظة t=0 فنشاهد على شاشة

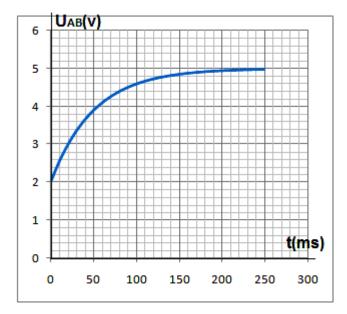
راسم الاهتزاز المهبطي المنحنى Uc(t) الممثل في

الشكل-5.

1. اعط عبارة المعادلة التفاضلية التي تعبّر عن Uc(t) توتر بين طرفى المكثفة ؟

2. يعطى حل المعادلة التفاضلية السابقة بالعبارة

$$.U_c(t) = A\left(1 - e^{-\frac{t}{a}}\right) + B$$


 \mathbf{a} و \mathbf{B} و \mathbf{B} استنتج العبارة الحرفية للثابت

المكثفة. au عيّن بيانيا قيمة au واستنتج السعة au

(t=0) بعد غلق القاطعة (في اللحظة -2

اعط شدة التيار I_0 المار في الدارة.

 I_0 نفرض ان مكثفة كانت فارغة اعط اعط شدة التيار المار في الدارة.

- اذا علمت ان ان مقاومة تفسد عند مرور تيار قيمته $I=6 \ \mathrm{mA}$ اي حالات صالح لمعرفة قيمة سعة مكثفة .
 - حالة مكثفة مشحونة ب 2v عند بداية .
 - حالة مكثفة فارغة عند بداية.

الجزئ الثاني: على (7 نقاط) (الكمياء)

التمرين الثالث:

II. دراسة ثابت توازن لحمض كربوكسيلى: (04 نقاط)

 C_0 نعتبر محلو لا لحمض الإيثانويك تركيزه المولى

- 1) أكتب معادلة تفاعل حمض الإيثانويك مع الماء ؟
- يد النهائية au النهائية au
 - τ و τ و C_0 بدلالة (CH3COOH] و باستنتج τ

$$K_A = C_0 \frac{\tau^2}{1 - \tau}$$
 بين أن ثابت الحموضة للثنائية - (4

- . au نعين عن طريق قياس الناقلية قيمة au 5) من أجل قيم مختلفة لـ au_0 نعين عن طريق قياس الناقلية قيمة
 - أ ـ أكمل الجدول التالي ؟

	$C_0 (mol / L)$	1×10^{-2}	5×10^{-3}	1×10^{-3}	5×10^{-4}
--	-------------------	--------------------	--------------------	--------------------	--------------------

τ	4×10^{-2}	5.6×10^{-2}	12.5×10^{-2}	16×10^{-2}
$x = \frac{1}{C_0}$				
$y = C_0 \frac{\tau^2}{1 - \tau}$				

ι.

Y = f(x) أرسم البيان y = f(x) ؛

II. صناعة الاستر: (03 نقاط)

الاسترات توجد في حياتنا اليومية: في المعطرات ، في المواد الغذائية ... يمكن الحصول عليها من النبات كما يمكن إصطناعها في المخابر

يصطنع الاستر الذي نريد دراسته إنطلاقا من تحول كيميائي للجملة (حمض البنزويك ، الميثانول). من أجل ذلك نمزج $m_1=12.2~{
m g}$ من حمض البنزويك مع حجم $m_2=30~{
m mL}$ من حمض البنزويك مع حجم نسخن بالتقطير المرتد لمدة min 60 بعد التبريد نسكب محتوى البالونة في حبابة تحتوي على (ماء + جليد) لنحصل على طورين مختلفين . نعزل الطور الذي يحتوي على الإستر لنحصل في الأخير على كتلة $g=9.52~{
m g}$ من الاستر .

المعطيات:

النوع الكيميائي	الصيغة	الكتلة المولية ⁻ g.mol) (1	الكتلة الحجمية (g.L ⁻¹)
حمض البنزويك	C ₆ H ₅ COOH	122	1.3
الميثانول	CH ₃ -OH	32	0.80
الاستر مراد دراسته		136	1.1

التجربة:

- 1 عين كمية المادة لحمض البنزويك و كمية المادة للميثانول المستعمل ؟
 - 2 ـ عين العوامل الحركية التي أستعملت لتسريع التفاعل؟
 - 3 ـ لماذا أستعمل التسخين مع التقطير المرتد؟
 - 4 أكتب معادلة تفاعل إصطناع الاستر ؟ اعط اسمه ؟
 - 5 ـ اعط خصائص هذا التحول ؟
 - 6 عرف ثم أحسب مردود التفاعل ؟