اختبـــار الثلاثي الثاني في مادة العلـوم الفيزيائيـــــة

التمرين الأول: (07 نقاط)

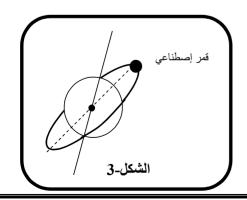
 $pH_0=10.6$ وله C_b وله NH_3 تركيزه المولي الابتدائي $V_b=20ml$ وله $V_b=20ml$ نضع في بيشر حجما في بيشر حجما $C_a=10^{-2}mol/l$ تركيزه المولي الابتدائي $\left(H_3O^++Cl^-\right)$ تركيزه المولى مائي لحمض كلور الهيدروجين $\left(H_3O^++Cl^-\right)$ تركيزه المولى المولى

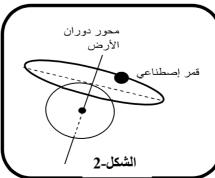
بالاعتماد على نتانج المعايرة مثلنا البيان الموضح بالشكل:

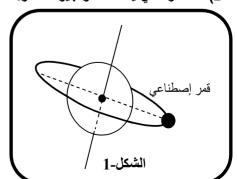
- 1) أكتب معادلة تفاعل المعايرة الحادث.
 - 2) اعتمادا على البيان:
- أ- استنتج حجم المحلول الحمضي V_{aE} اللازم للتكافؤ.
 - ب- أحسب التركيز المولى C_b لمحلول غاز النشادر .
 - ت- بين أن غاز النشادر أساس ضعيف.
- pKa أوجد قيمة ثابت الحموضة pKa للثنائية pKa . pKa
 - ناب عبارة K ثابت التوازن لتفاعل المعايرة بدلالة K ثابت الحموضة واحسبه.
 - ماذا تستنتج ؟
 - 4) ما هو الكاشف المناسب لهذه المعايرة من بين الكواشف الملونة الموضحة في الجدول ؟

أحمر كلورو	فينول فتالين	الهيليانتين	الكاشف
فينول			الملون
6.8 - 5.2	10.0 - 8.0	4.4 - 3.1	مجال التغير
			اللونى
			# 5

 أنقل الجدول الآتي على ورقة اجابتك وحدد طبيعة المحلول والصفة الغالبة الموافقتين لحجم الحمض المضاف في كل مرة:


$$V_a=15ml$$
 $V_a=10ml$ $V_a=0ml$ $V_a=0ml$ V_a (ml) V_a (ml) U_a U


 $Ke = 10^{-14}$ يعطى:


التمرين الثانى: (06 نقاط)

نعتبر الأرض كروية الشكل كتلتها M ونصف قطرها R ،ندرس حركة قمر جيو مستقر من النوع météosat المستعمل في الرصد الجوي . R

- I- نقترح ثلاثة مدارات إفتراضية حول الأرض كما في الأشكال 1، 2، 3.
 - حدد مع التعليل:
 - 1) المدار الذي يتعارض مع القانون الثاني لنيوتن.
 - 2) المدار الذي يسلكه قمر جيو مستقر.

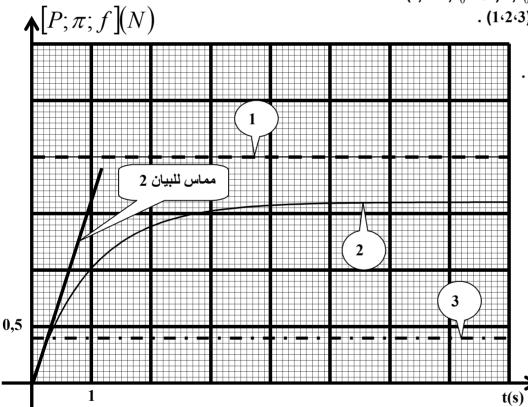
$$\frac{1}{v^2} \left(\times 10^{-8} s^2 / m^2 \right)$$
0,4

الشكل-4

0,4

- II- يقوم قمر اصطناعي في المرجع الجيومركزي بحركة r=R+h دائرية منتظمة مركزها O ونصف قطرها
 - حيث h الارتفاع عن سطح الأرض.
 - 1) ذكر بقانون الجذب العام لنيوتن .
 - 2) بتطبيق القانون الثاني لنيوتن أوجد:
- M و G; R; h عبارة سرعة القمر الاصطناعي v بدلالة: G; R; h و v بين أنه يمكن كتابة عبارة نظرية من الشكل:
 - B و A يطلب تحديد عبارتي $\frac{1}{v^2} = A.h + B$
 - $\frac{1}{v^2} = f(h)$: بواسطة برمجية مناسبة تم رسم البيان (3
 - أ- أكتب العبارة البيانية .
 - . R ب- استنتج كتلة الأرض M ونصف قطرها

$$G = 6,67.10^{-11} N.m^2 / Kg^2$$
 : يعطى


التمرين الثالث: (07 نقاط)

نترك عند اللحظة $\overline{0}=0$ ودون سرعة ابتدائية كرية حجمها $V=4.10^{-5}\,m^3$ وكتلتها الحجمية ρ لتسقط شاقوليا وبسرعة ضعيفة في مائع كتلته الحجمية ρ (حيث $\rho>\rho_0$).

 $h(\times 10^6 \overline{m})$

باستعمال برمجية تحصلنا على المنحنيات (1،2،3) .

- 1) بتطبيق القانون الثاني لنيوتن:
- جد المعادلة التفاضلية لسرعة الكرية .
 - 2) استنتج عبارة كلا من:
 - v_L السرعة الحدية
 - . التسارع الابتدائي a_0 للكرية -
 - (3) أرفق المنحنى الموافق لكل قوة، مع التعليل.

4) اعتمادا على الشكل ،جد قيمة كلا من :

المائع	الماء	الزيت	الهواء	الغليسيرول
$\rho_0 \binom{Kg}{m^3}$	1000	920	1.295	1300

- أ- قيمة التسارع الأرضي g والزمن المميز للحركة au.
 - v_L . والسرعة الحدية k
 - . التسارع a_0 بطریقتین مختلفتین
 - 5) ما هو المائع الذي استعمل في هذه الدراسة ؟