

اختبار في مادة العلوم الفيزيائية

المستوى: السنة الثالثة رياضيات مارس 2023 المدة: 2 سا

<u>التمرين الأول 10 نقاط</u>

لدينا دارة كهربائية تحتوي على وشيعة (L , r) و ناقل أومي مقاومته $R=85\Omega$ و مولد قوته المحركة الكهربائة E و قاطعة على التسلسل نغلق القاطعة في اللحظة E .

1/ أرسم مخطط الدارة مبينا ربط راسم الاهتزاز المهبطي لمشاهدة التوتر بين طرفي الوشيعة و التوتر الكلي

$$\frac{du_L}{dt} + \left(\frac{R+r}{L}\right) U_L = \frac{Er}{L}$$
 : نكتب على الشكل المعادلة التفاضلية بدلالة يا تكتب على الشكل المعادلة التفاضلية بدلالة التفاضلية بدلالة التفاضلية بدلالة المعادلة التفاضلية بدلالة التفاضلية التف

وابت يطلب تعينهما A , B , α شوابت عينهما A , B , α أن حل هذه المعادلة التفاضلية من الشكل $u_L = A + Be^{-\alpha t}$

A , B , $\dfrac{1}{lpha}$ لنحليل البعدي أعط مدلول الفيزيائي لكل من $\dfrac{1}{lpha}$

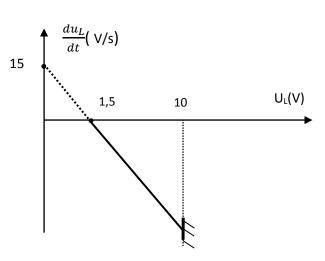
 $\frac{du_L}{dt} = f(u_L)$: بواسطة تقنية مناسبة تمكنا من رسم المنحنى البياني : 5

a/ أوجد المعادلة النظرية للبيان

b/ إستنتج المعادلة البيانية

c/ أوجد كل من : المقاومة الداخلية للوشيعة r و ذاتيتها L

النظام الدائم τ و قيمة التيار في النظام الدائم d


 $u_R = g(t)$ إستنتج / e

ارسم كيفيا المنحنى $u_L = f(t)$ و $u_R = g(t)$ في نفس المعلم $u_R = g(t)$

g/ أوجد حسابيا اللحظة التي يكون فيها التوترين UR و UR متساويين

h/ أعط عبارة الطاقة المخزنة في الوشيعة ثم احسب قيمتها في تلك اللحظة

i/ لماذا في المستقيم المعطى هناك نقاط متقاطعة

<u>التمرين الثاني (10نقاط)</u>

نعتبر ثلاث محاليل حمضية S_3 ، S_2 ، S_3 ، S_3

نعاير حجم $V_A = 20 \, \text{mL}$ من كل حمض من الأحماض السابقة وذلك بواسطة محلول الهيدروكسيد الصوديوم تركيزه C_B وليكن الحجم اللازم لبلوغ التكافؤ هو V_B . أعطت القياسات النتائج الموضحة بالجدول :

S ₃	S_2	S_1	المحلول
C ₃	C_2	C ₁	التركيز المولي
2.0	2.0	3.4	рН
10	20	10	V_{B_E}

1 – اكتب معادلة تفاعل حمض A مع الأساس هيدروكسيد الصوديوم (NaOH) .

 $_{\rm C_2}$ و $_{\rm C_3}$ ثم العلاقة بين $_{\rm C_1}$ و $_{\rm C_3}$ ثم العلاقة بين $_{\rm C_1}$ و $_{\rm C_3}$.

3 - حدد اي الأحماض أقوى من الأحماض السابقة . مع التعليل ؟

4 - نمدد كل محلول من المحاليل السابقة S3 · S2 · S1 مرات فنحصل على محاليل S3 · S2 · S1 قياس pH المحاليل الممددة اعطى النتائج:

S ₃	S ₂	S ₁	المحلول
3	2.5	3.9	рН

أذكر البروتكول التجريبي لعملية التمديد في حالة ما نأخذ من المحلول الأم 10 mL .

أحسب مقدار التغير في قيمة pH محلول لحمض قوي عند تمديده 10 مرات.

استنتج بأن أحد الأحماض السابقة قوي والحمضين الآخرين ضعيفين.

 C_2 . C_1 أحسب قيم التراكيز C_3 و C_3 ثم استنتج

 $pK_a = 2pH + logC$: نا أن نعتبر انه من اجل الأحماض الضعيفة جدا أن

 $A_1H/A_1^-/A_2^-A_2H$ برر العلاقة السابقة ثم احسب قيم K_{a_2} ، K_{a_1} قيم احسب قيم

مستنتجا أي الحمضين أقوى من بين A₁H و A₂H .

تمت جميع الدر اسات من أجل درجة الحرارة 25°C

شعبة رياضيات السنة الثالثة

t(s)

التمرين الاول

$$E = u_R + u_L = (R+r) i + L \frac{di}{dt} = (R+r) \frac{u_R}{R} + \frac{L}{R} \frac{du_R}{dt} = \frac{R+r}{R} (E-u_L) - \frac{L}{R} \frac{du_L}{dt}$$

$$\frac{du_L}{dt} + (\frac{(R+r)}{L} u_L = \frac{Er}{L}$$

$$\frac{du_L}{dt} + \frac{du_L}{dt} = \frac{Er}{L}$$

$$\frac{du_L}{dt} + \frac{du_L}{dt} = \frac{Er}{L}$$

$$\frac{du_L}{dt} + \frac{du_L}{dt} + \frac{du_L}{dt} = \frac{Er}{L}$$

$$\frac{du_L}{dt} + \frac{du_L}{dt} = \frac{er}{L}$$

u_R, u_L

 $\frac{1}{\alpha} = \frac{R+r}{L}$ و B = RIo و A = rio و A = rio

البيان عبارة عن خط مستقيم من الشكل: y = ax + b

$$\frac{du_L}{dt} = -\frac{(R+r)}{L} U_L + \frac{Er}{L}$$
 المعادلة النظرية

E = (r+R) I₀ (1);
$$u_L = Ri_0 (2) \frac{1}{2} : \frac{E}{u_L} = \frac{10}{1.5} = \frac{R+r}{R}$$
; $r = 15\Omega$
$$\frac{Er}{L} = 15; L = \frac{10.15}{15} = 10H$$

 $au = \frac{L}{R+r} = 0.1$ ثابت الزمن

$$| \cdot \cdot |_{0} = \frac{u_{L}}{r} = \frac{1.5}{15} = 0.1A$$
 ; $| \cdot |_{0} = \frac{E}{R+r} = \frac{10}{100} = 0.1A$

$$U_{R} = E - u_{L} = (R+r) I_{0} - ri_{0} - RI_{0}e^{\frac{-t}{\tau}} = RI_{0} - RI_{0}e^{\frac{-t}{\tau}} = RI_{0}(1 - e^{\frac{-t}{\tau}})$$

 $u_L: 2$ $u_R: 1$

$$u_R = u_L$$
 ; $t = \tau \ln \frac{R - r}{2R} = 0.088s$

$$E_L = \frac{1}{2} \operatorname{Li}^2 = \frac{1}{2} \operatorname{LI}_0^2 (1 - e^{\frac{-t}{\tau}})^2 = 0.017 \operatorname{J}$$

 $u_L = Ri_0 = 15.0, 1 = 1.5$ تم رسم بخطوط متقاطعة إبتداء من $u_L = 1.5$ لأن الوشيعة لديها مقاومة و في النظام الدائم

التمرين الثاني

$$AH + OH^{-} = A^{-} + H_{2}O$$

$$C_1V_1 = C_bV_{b1}$$
; $C_2V_2 = C_bV_{b2}$; $C_3V_3 = C_bV_{b3}$

 $C_2 = 2C_1$ و $C_1 = C_3$ ابعد الحساب نجد أن

لمعرفة أي حمض لأقوى نحسب au لكل محلول علما أن $au = \frac{10^{-PH}}{c}$ إنطلاقا من قيم الــــ PH و العلاقة الموجودة بين التراكيز

 AH_1 و بدوره أقوى من AH_2 معناه أن AH_3 أقوى من $3 > au_2 > au_1$

PH2 = PH1 +1 نجد أن
$$\tau = \frac{10^{-PH1}}{C} = \frac{10^{-PH2}}{\frac{C}{10}} = 1$$
 : حمض قوي :

من خلال القراءة في الجدول نستنتج ان AH₃ القوي

نرجع إلى الجدول الاول عند 3H =2 AH و هو الذي يزداد بواحد أي

 $C_2 = 2.10^{-2} \text{ mol/l}$ $C_1 = 10^{-2} \text{ mol/l}$ $C_3 = 10^{-2} \text{ mol/l}$

التفكك ضعيف يمكن إهمال
$$A^-$$
 أمام C و منه C التفكك ضعيف يمكن إهمال C أمام C

$$PK_a = PH - log [H_3O^+] + log c = 2PH + log c$$
 j $PK_a = PH - log $\frac{[H_3O^+]}{c}$$