الشكل-2-

الشكل -3-

الشكل-1-

K

 $U_{C}(V)$

اختبار الفصل الثاني لمادة العلوم الفيزيائية

التمرين الأول:

مكثفة مجهولة السعة نريد تحديد سعتها، لهذا الغرض نحضر مولد G توتره ثابت E=4V ناقل أومي مقاومته $R=200\Omega$

 U_C و U_R ، E التوترات U_R و كذلك جهة التوترات U_R و كذلك به التوترات U_R و U_R و U_R

ب/أكتب المعادلة التفاضلية التي يخضع لها التوتر بين طرفي المكثفة؟

.
$$U_C=A(1-e^{-eta t})$$
 : ج $/$ حل المعادلة التفاضلية من الشكل

 β اوجد عبارة كل من β و

2- باستخدام تجهيز مناسب تحصلنا على البيان الموضح في الشكل (1) عين بيانيا قيمة ثابت الزمن τ ثم استنتج سعة المكثفة Υ ?

التمرين الثاني:

تتكون دارة كهربائية من العناصر التالية مربوطة على التسلسل: (الشكل -2-)

- وشيعة ذاتيتها L ومقاومتها r .

 $_{\cdot}$. $R=17.5~\Omega$ ناقل اومي مقاومته

E = 6V مولد ذي توتر كهربائي ثابت -

K قاطعة K

في اللحظة t=0 نغلق القاطعة K سمحت برمجية للإعلام الآلي بمتابعة شدة التيار الكهربائي المار في الدارة مع مرور الزمن ومشاهدة البيان

(-3-1) الشكل. i = f(t)

1- بالاعتماد على البيان:

أ- استنتج قيم كل من شدة التيار الكهربائي في النظام الدائم، قيمة ثابت الزمن τ للدارة.

ب- احسب كل من المقاومة r و الذاتية L للوشيعة.

2- أ- بتطبيق قانون جمع التوترات اثبت أن:

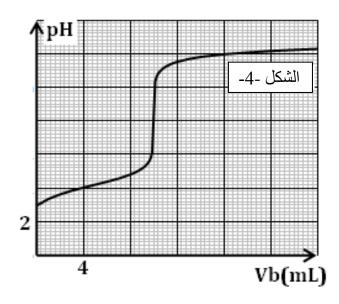
$$\frac{di}{dt} + \frac{1}{\tau} i(t) = \frac{I_0}{\tau}$$

حيث I_0 شدة التيار في النظام الدائم.

$$i(t) = I_0 \ (1 - e^{-\frac{t}{\tau}})$$
 بين أن حل المعادلة هو من الشكل:

3- نغير الآن قيمة الذاتية L للوشيعة وبمعالجة المعطيات ببرمجية إعلام آلي نسجل قيم τ ثابت الزمن للدارة لنحصل على النتائج المدونة في الجدول التالي :

$\tau(ms)$	4	8	12	20
L(H)	0,1	0,2	0,3	0,5


L = h(au) أ- ارسم البيان

ب- اكتب المعادلة الرياضية للبيان .

ج- استنتج قيمة مقاومة الوشيعة r ، هل تتوافق هذه القيمة المحسوبة في السؤال 1- μ

التمرين التجريبي:

- نقيس عند التوازن (C=1 \times 10 $^{-2}$ mol/l تركيزه المولي C_6H_5-COOH نقيس عند التوازن (S) الحمض البنزويك C_6H_5-COOH تركيزه المولي $C=0.86\times10^{-2}$ نقيس عند التوازن في الدرجة $C=0.86\times10^{-2}$ نقيس عند التوازن
 - 1- أكتب معادلة التفاعل المنمذج لتحول حمض البنزويك في الماء.
 - 2- أنشئ جدو لا لتقدم التفاعل.
- - 4- أوجد النسبة النهائية au_f لتقدم التفاعل. ماذا تستنتج؟
 - 5- أحسب ثابت التوازن الكيميائي k.
- (C_6H_5COOH) يتكون مشروب غازي من ثنائي أكسيد الكربون CO_2 منحل في الماء والسكر وحمض البنزويك (C_6H_5COOH). يريد أحد التلاميذ إجراء عملية معايرة لمعرفة التركيز المولي C_a للحمض في هذا المشروب، ولأجل ذلك يأخذ منه حجما قدره $V_a=50ml$ بعد إزالة غاز CO_2 عن طريق رجه جيدا ويضعه في بيشر ثمّ يعايره بواسطة محلول هيدروكسيد الصوديوم ($Na_{(aq)}^+ + HO_{(aq)}^-$).
- $25^{\circ}C$ عند الدرجة pH المزيج عند الدرجة pH المناف يسجل التلميذ في كل مرة قيمة pH المزيج عند الدرجة pH المتعمال مقياس الدpH متر فتمكن من رسم المنحنى البياني $pH=f(V_b)$.
 - باعتبار حمض البنزويك الحمض الوحيد في المشروب الغازي.
 - أ- اكتب المعادلة الكيميائية المعبرة عن التفاعل المنمذج للتحول الكيميائي الحاصل خلال المعايرة.
 - ب- حدد بيانيا إحداثيتي نقطة التكافؤ E.
 - ج- استنتج التركيز المولى C_a لحمض البنزويك.
 - 2- من أجل حجم $V_b=5\ ml$ لهيدروكسيد الصوديوم المضاف:
 - أ- أنشئ جدو لا لتقدم التفاعل.
 - ب- أوجد كمية مادة كل من شوارد الهيدرونيوم $(H_3O_{(aq)}^+)$ وجزيئات حمض البنزويك المتبقية في الوسط التفاعلي.
 - 3- ما هو الكاشف المناسب لمعرفة نقطة التكافؤ من بين الكواشف المذكورة أدناه مع التعليل؟

<i>pH</i> مجال التغير اللوني	اسم الكاشف
6,2-4,2	أحمر الميثيل
7,6 – 6,0	أزرق البروموتيمول
10,0 – 8,0	الفينول فتاليين