الجمهورية الجزائرية الديمقراطية الشعبة

السنة الدراسية: 2018/2017

الشعبة: الرياضيات

المادة: العلوم الفيزيائية

مديرية التربية لولاية مستغانم ثانوية عشعاشة (حمدي شريف)

المستوى: السنة الثالثة

:

تركيزه المولي $CaI_{2(aq)}$ وفي درجة حرارة $CaI_{2(aq)}$ حجما $V_1 = 10~mL$ من محلول مائي ليود الكالسيوم وفي درجة حرارة $CaI_{2(aq)}$ تركيزه المولي t=0 مع حجم $V_2 = 20~mL$ مع حجم $V_2 = 20~mL$ مع حجم $V_2 = 20~mL$ مع حجم عدم عدم المولي المولي المولي عدم عدم $V_2 = 20~mL$ مع حجم عدم عدم المولي المو

. النشا من كاشف صمغ النشا من حمض الكبريت المركز وبضع قطرات من كاشف صمغ النشا $C_2 = 0.02 \ mol. L^{-1}$

 $(V = V_1 + V_2)$ (نعتبر أن حجم الخليط

- إذا علمت أن الثنائيتين (0xd) المشاركتين في هذا التحول الكيميائي التام هما I_2/I^- و I_2/I^- .

أ- أكتب المعادلة المعبرة عن التفاعل أكسدة-إرجاع المنمذج للتحول الكيميائي الحادث.

ب- أعط عنوانا لهذا التحول الكيميائي .

ج- ما هو لون الوسط التفاعلي عند نهاية التفاعل ؟ علل .

2- لتكن $n_i(I^-)$ كمية المادة الابتدائية لشوار د اليود و $n_i(ClO^-)$ كمية المادة الابتدائية لشوار د الهيبوكلورات .

. أحسب كل من $n_i(I^-)$ و $n_i(I^-)$ ثم حدد المتفاعل المحد

3- لنعتبر أن $y=\frac{x}{v}$ تقدم التفاعل الحجمي ، أنجز جدول التقدم مستعملا

. التقدم الحجمي y ثم أحسب Y_{max} تقدم التفاعل الحجمي الأعظمي

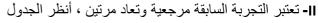
4- توجد عدة تقنيات لمتابعة تطور التقدم التفاعل الحجمي y بدلالة الزمن ، تحصلنا على البيان الممثل في الشكل-1-

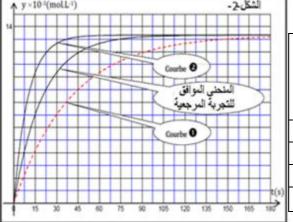
أ- أذكر على الأقل واحدة من هذه التقنيات .

ب- بالاعتماد على البيان:

*- بين أن فعلا هذا التحول تام .

*- زمن نصف التفاعل _{1/2}


ج- عرف السرعة الحجمية للتفاعل ثم أحسب قيمتها في اللحظتين $t_0=0$ و $t_{1/2}$. كيف تتغير هذه السرعة ؟ علل ذلك .


د- أستنتج سرعة اختفاء شوارد اليود عند اللحظتين السابقتين .

5- إن ماء جافيل المستعمل أخذ من قارورة مكتوب عليها $^{\circ}Chl$ وبعد تمديده 35 مرة . هل ماء جافيل محضر حديثا ؟

ملاحظة: الدرجة الكلورومترية (n Chl): توافق حجم غاز ثنائي الكلور مقدرا باللتر والمقاس في الشروط النظامية من ضغط ودرجة حرارة واللازم استعماله لصنع L من ماء جافيل.

 $Cl_{2(g)}+2ig(Na_{(aq)}^++HO_{(aq)}^-ig)=ClO_{(aq)}^-+Cl_{(aq)}^-+Cl_{(aq)}^-+2Na_{(aq)}^++H_2O_{(l)}^-$: يعتبر هذا التفاعل تام

		المرجعية	رمز التجربة
نعمل في	نضيف عند		
درجة حرارة	20 mL t = 0		
50° <i>C</i>	من الماء المقطر		
			$[I^{-}]_{i} \times 10^{-3} \ mol.L^{-1}$
			$[ClO^{-}]_{i} \times 10^{-3} \ mol.L^{-1}$
بالزيادة	بالزيادة	بالزيادة	$[H_3O^+]$
50° <i>C</i>	25° <i>C</i>	25° <i>C</i>	θ $^{\circ}C$

الشكل -2- يبين منحنيات تطور تقدم التفاعل الحجمي بدلالة الزمن للتجارب الثلاثة.

1- هل يمكن اعتبار حمض الكبريت المركز في هذه التجارب كوسيط؟ علل .

2- أكمل الجدول السابق ، ثم أرفق كل منحنى بياني برمز تجربته ، مع التعليل .

:

 $n(Cl_2) = X_m$: $n(ClO^-) = X_m$ $n(Cl_2) = n(ClO^-)$: $V(Cl_2) = \frac{C_0.V_m}{V_0} \qquad \frac{V(Cl_2)}{V_m} = \frac{C_0.V_m}{V_0}$ $V(Cl_2) = 1L \quad C_0 = 35 C_2$: $V(Cl_2) = 15,7 L \approx 16 L$

-1-II

. 2- إكمال الجدول السابق:

		المرجعية	رمز التجربة
نعمل في	نضيف عند		
درجة	t = 0		
حرارة	20 <i>mL</i>		
50° <i>C</i>	من الماء		
	المقطر		
133.3	80,0	133.3	$[I^-]_i$
			$\times 10^{-3} \ mol. L^{-1}$
13,3	8,0	13,3	[ClO ⁻] _i
			$\times 10^{-3} \ mol. L^{-1}$
بالزيادة	بالزيادة	بالزيادة	$[H_3O^+]$
50° <i>C</i>	25° <i>C</i>	25° <i>C</i>	θ°С

$$[ClO^-]_i = rac{n_i(ClO^-)}{V}$$
 و $[I^-]_i = rac{n_i(I^-)}{V}$: لدينا $V = V_1 + V_2 + V_{eau}$: حيث *- إرفاق كل منحنى بياني برمز تجربته،مع التعليل :

التعليل	البيان	رمز
	الموافق	التجربة
		المرجعية
زيادة درجة الحرارة تزيد	b	1
من سرعة التفاعل		
تناقص التركيز يبطئ	а	2
التحول الكيميائي		

- 1 - أ- كتابة المعادلة المعبرة عن التفاعل أكسدة-إرجاع المنمذج للتحول الكيميائي الحادث:

$$ClO_{(aq)}^{-} + 2H_{(aq)}^{+} + 2\acute{e} = Cl_{(aq)}^{-} + H_{2}O_{(l)}$$

$$2I_{(aq)}^{-} = I_{2(aq)} + 2\acute{e}$$

$$ClO_{(aq)}^{-} + 2I_{(aq)}^{-} + 2H_{(aq)}^{+} = Cl_{(aq)}^{-} + I_{2(aq)} + H_{2}O_{(l)}$$

$$ClO_{(aq)}^-+2I_{(aq)}^-+2H_{(aq)}^+=Cl_{(aq)}^-+I_{2(aq)}^-+H_2O_{(l)}$$
ب-اعطاء عنوانا لهذا التحول الكيميانى :

 $ClO_{(aq)}^-$ اكسدة شوارد اليود $I_{(aq)}^-$ بواسطة شوارد الهبوكورات

ج- لون الوسط التفاعلي عند نهاية التفاعل:

بني بسبب تشكل ثنائ اليود - يصيح أزرق في وجود كاشف صمغ النشا

: $n_i(ClO^-)$ و $n_i(I^-)$ کل من $n_i(I^-)$

$$n_i(I^-) = 2C_1V_1 = 4.10^{-3} mole$$

 $n_i(ClO^-) = C_2V_2 = 0, 4.10^{-3} mole$

*- تحديد المتفاعل المحد:

 ClO^- وعليه المتفاعل المحد هو $rac{n_i(I^-)}{2} > rac{n_i(ClO^-)}{1}$

3- *-انجاز جدولًا التقدم مستعملا التقدم الحجمي y

المعادلة $ClO_{(aq)}^- + 2I_{(aq)}^- + 2H_{(aq)}^+ = Cl_{(aq)}^- + I_{2(aq)} + H_2O_{(l)}$				72 0 (1)			
الحالة	التقدم	كمية المادة الحجمية بـ mol.L ⁻¹					
	الحجمي						
ابتدائية	0	$\frac{n_i(ClO^-)}{V}$	$\frac{n_i(I^-)}{V}$	بوفرة	0	0	بوفرة
انتقالية	у	$\frac{n_i(ClO^-)}{V}$ – y	$\frac{n_i(I^-)}{V}$ – 2Y	بوفرة	У	у	بوفرة
نهائية	Y_f	$\frac{n_i(ClO^-)}{V} - Y_{\mathrm{f}}$	$\frac{n_i(I^-)}{V} - 2Y_{f}$	بوفرة	Y _f	Y _f	بوفرة

 $Y_m = Y_f$: التحول تام

*- حساب Ymax تقدم التفاعل الحجمى الأعظمى:

$$Y_{\text{max}} = \frac{n_i(ClO^-)}{V} = 13, 3.10^{-3} \text{ mol. L}^{-1}$$

4- أ- ذكر على الأقل واحدة من هذه التقنيات : قياس الناقلية
 ب- بالاعتماد على البيان :

*- تبيان أن فعلا هذا التحول تام:

 $Y_f=13,3.10^{-3}pprox Y_m$: فإن $t\geq t_fpprox 120~min$

: $t_{1/2}$ خ- زمن نصف التفاعل $t_{1/2}$

$$t=t_{1/2}\Rightarrow X_{1/2}=rac{1}{2}X_f\Rightarrow Y_{1/2}=rac{1}{2}Y_f\Rightarrow t_{1/2}pprox 15\ s$$
ج- *- تعریف السرعة الحجمیة للتفاعل :

مقدار تقدم التفاعل بالنسبة للزمن في واحد لتر من الوسط التفاعلي ، عبارتها $v_V(t)=rac{1}{v}rac{dx(t)}{dt}=rac{dy(t)}{dt}$

 $t_{1/2}$ و $t_{0}=0$ مع تفسير تغيرها : $t_{0}=0$ مع تفسير عبرها :

$t_{1/2}$	0	t(s)
$2,37.10^{-4}$	$6,67.10^{-4}$	$v_V(t) (mol. s^{-1}. L^{-1})$
من حتى تنعدم	تتناقص خلال الز	كيفية التغير
حالته النهائية	عند بلوغ التفاعل	
تفاعلات	تناقص تراكيز الم	التبرير

د- استنتاج سرعة اختفاء شوارد اليود عند اللحظتين السابقتين:

$$v_{I^-}(t) = -rac{dn_{I^-}(t)}{dt}$$
 : $v_{I^-}(t) = -rac{dn_{I^-}(t)}{dt}$: $v_{I^-}(t) = -rac{n_{I^-}(t)}{V} = rac{n_{I^-}(t)}{V} - 2$: $v_{I^-}(t) = 2V rac{dy(t)}{dt}$: $v_{I^-}(t) = 2V rac{dy(t)}{dt}$: $v_{I^-}(t) = 2V rac{dy(t)}{dt}$: $v_{I^-}(t) = -2V rac{dy(t)}{dt}$: $v_{I^-}(t) = -2V$

5- التأكد من الدلالة: