

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

مؤسسة التربية و التعليم الخاصة سليم

ETABLISSEMENT PRIVE D'EDUCATION ET D'ENSEIGNEMENT SALIM

www.ets-salim.com 2 021 87 10 51

رخصة فتح رقم 1088 بتاريخ 30 جانفي 2011

خضيري- ابندائي- متوسط - ثانوي

عتماد رقم 67 بتاريخ 06 سبتمبر 2010

جانفي2018

المستوى: الثالثة ثانوي (علوم تجريبية) 3ASS

فرض في مادة العلوم الفيزيائية للفصل الثاني

التمرين 1 :

المحاليل عند درجة الحرارة (25° C).

 $(C_1 = 1.10^{-2} \text{ mol. } 1^{-1})$ تركيزه $(C_6 H_5 - COOH)$ ناخذ محلولا

 $\sigma = 8,6.10^{-3} \, S.m^{-1}$) النوعية النوعية النوازن ناقليته النوعية ($\sigma = 8,6.10^{-3} \, S.m^{-1}$

أ - اكتب معادلة التفاعل لتحول حمض البنزويك في الماء .

ب- انشىء جدول تقدم التفاعل الحادث .

جـ - احسب التراكيز المولية للأنواع الكيميائية المتواجدة في المحلول (S_1) عند التوازن . تعطى الناقلية المولية

$$\lambda_{H_3O^+} = 35,0.10^{-3} S.m^2.mol^{-1}$$
 , $\lambda_{C_6H_5COO^-} = 3,24.10^{-3} S.m^2.mol^{-1}$: الشاردية

د- احسب النسبة النهائية $\left(au_{f1}
ight)$ لتقدم التفاعل . ماذا تستنتج ؟

(pH = 3.2)

. والما النسبة النهائية $\left(\, \, au_{f\, 2} \, \, \right)$ التقدم تفاعل حمض الساليسيليك مع الماء .

ب- قارن بین $\left(\, au_{f\, 2} \,
ight)$ و $\left(\, au_{f\, 2} \,
ight)$. ماذا تستنتج ؟ .

التمرين 2 ..

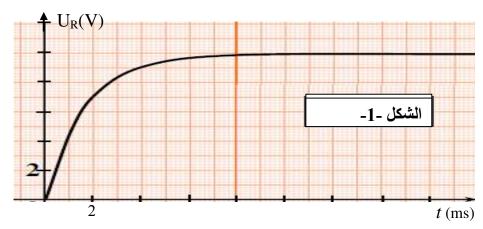
نريد معرفة سلوك وشيعة ذاتيتها L و مقاومتها الداخلية r ، لذا نشكل دارة كهربائية تتكون من الوشيعة على التسلسل مع مولد قوته المحركة الكهربائية ثابتة E=1~2V و ناقل أومى مقاومته $R=12\Omega$ و قاطعة K .

1 – ارسم مخطط الدارة الكهربائية و بيّن عليه الجهة الاصطلاحية للتيار و الأسهم الممثلة للتوترات الكهربائية بين

t=0 غند اللحظة (t=0 غند اللحظة (t=0

أ / أوجد المعادلة التفاضلية التي تعطى التوتر U_R بين طرفي الناقل الأومى .

ب / بيّن أن المعادلة التفاضلية الّناتجة تّقبل العبارة : $U_R(t) = A \; (1 - e^{-t/B})$ حلاً لها ما هو المدلول الفيزيائي للثابتين A و B ؟

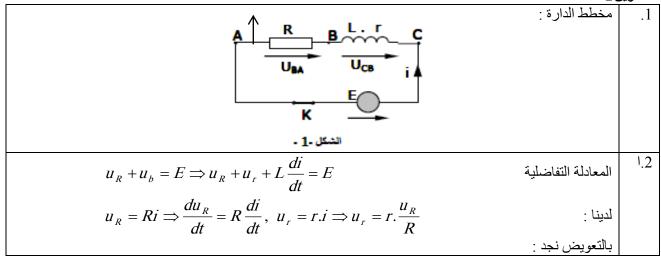

جـ / نريد مشاهدة التوتر U_R بين طرفي الناقل الأومي باستعمال راسم اهتزاز مهبطي ذو ذاكرة ، بيّن على المخطط السابق كيفية ربطه لتحقيق ذلك ؟

الصفحة 2/1

حي قعلول -بوج البحري- الجزائر

Eel: 0560.94.88.02/05.60.91.22.41/05.60.94.88.03 - ألفاكس: Tel: 0560.94.88.02/05.60.91.22.41/05.60.94.88.05 : €

z=1 - استنتج المنحنى المشاهد على شاشة راسم الاهتزاز و المعطى على الشكل - z=1رَ بَ اللّٰهُ اللّٰلّٰ الللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ الللّٰلِلللّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰ اللّٰلّٰلِلللّٰلْمُلْلِلْمُلْلِلْمُلْلِلْمُلْلِلْمُلْلِلْمُلْلِلْمُلْلِلللّٰلِمُلْلِلْمُلْلِلْمُلْلِمُلْلْمُلْلِمُلْلِمُلْلِمُلْلْمُلْلِلْمُلْلِمُلْلِمُلْلِمُلْلِمُلْلِمُلْلِمُلْلِمُلْلْمُلْلِمُلْلِمُل


Web site : <u>www.ets-salim.com</u> /Fax023.94.83.37 : الفاكس: Tel : 0560.94.88.02/05.60.91.22.41/05.60.94.88.05 : *

التصحيح النموذجي

التمرين 1

					1 0	التمرير
C_6H_5COO	$DH_{(aq)}$ +	$H_2O_{(l)} = H_3O_{(aa}^+$	Q_{q} + $C_6H_5COO_{(aq)}^-$:	معادلة التفاعل	١.1
جدول التقدم :						
$C_6H_5COOH_{(aq)} + H_2O_{(l)} = H_3O_{(aq)}^+ + C_6H_5COO_{(aq)}^-$ المعادلة					$I_5COO^{(aq)}$	
حالة الجملة	التقدم	كمية المادة mol				1.ب
ح. الابتدائية	0	C_1V_1	متوفر	0	0	- .1
ح الإنتقالية	X	C_1V_1 -x	متوفر	X	X	
ح. النهائية	$\mathbf{X}_{\mathbf{f}}$	C_1V_1 - x_f	متوفر	$\mathbf{x}_{\mathbf{f}}$	$\mathbf{x}_{\mathbf{f}}$	
متوفر $x_f = x_f = x_f$ حساب التركيز عند التوازن :						
$\sigma = \left[H_3 O_{(aq)}^+\right] \left(\lambda_1 + \lambda_2\right) \Longrightarrow \left[H_3 O_{(aq)}^+\right] = \left[C_6 H_5 COO_{(aq)}^-\right] = \frac{\sigma}{\lambda_1 + \lambda_2}$						
					مهمل [-HO]	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $						1.ج
$\Rightarrow \left[H_3 O_{(aq)}^+ \right]_f = \left[C_6 H_5 COO_{(aq)}^- \right]_f = \frac{8.6 \times 10^{-3}}{(35 + 3.24) 10^{-3}} = 2.2 \times 10^{-4} \text{mol/l}$						
$\left[C_6H_5COOH\right]_f = \frac{n_0 - x_f}{V} = C_1 - \left[C_6H_5COO^{-1}\right]_f = 10^{-2} - 2.2 \times 10^{-4} = 9.78 \times 10^{-3} mol/l$						
$ au_{f1} = rac{X_f}{X_{ ext{max}}} = rac{\left[H_3O^+ ight]_f}{C_1} = 2.2\%$: نسبة التقدم النهائي						
بما أن 1 χ_{\max} فان التحول غير تام ومنه حمض بنزويك حمض ضعيف . $ au_{f1}\langle 1 \rangle$						1.د
		r	1 [1	ثابت التوازن :	
$K_{1} = \frac{\left[H_{3}O^{+}\right]_{f} \times \left[C_{6}H_{5}COO^{-}\right]_{f}}{\left[C_{6}H_{5}COO\right]_{f}} = \frac{\left(2,2 \times 10^{-4}\right)^{2}}{9,78 \times 10^{-3}} = 4.95 \times 10^{-6}$						1.ھـ
_	$[H_3O]$	$+ \int_{f} 10^{-PH}$	10 -3.2	/ .	نسبة التقديات	1.2
$ au_{f2} = rac{\left[H_3O^+ ight]_f}{C_2} = rac{10^{-PH}}{10^{-2}} = rac{10^{-3.2}}{10^{-2}} = 6.3\%$ نسبة النقدم النهائي $ au_{f2} = rac{10^{-PH}}{10^{-2}} = 6.3\%$						
ن حمض	أقوى م	حمض الساليسيليك	فان، $ au_{f2} > au_f$	$C_1 = C_2$ و	المقارنة: بما أن	2.ب
					البنزويك .	۷.۷

التمرين2

Web site: <u>www.ets-salim.com</u> /Fax023.94.83.37 : الفاكس: Tel: 0560.94.88.02/05.60.91.22.41/05.60.94.88.05 : *

$u_R + r \cdot \frac{u_R}{R} + \frac{L}{R} \cdot \frac{du_R}{dt} = E \Rightarrow \frac{du_R}{dt} + \frac{(R+r)}{L} \cdot u_R = \frac{R}{L} \cdot E$	
$u_R = A\left(1 - e^{-\frac{t}{B}}\right)$ $\Rightarrow \frac{du_R}{dt} = \frac{A}{B}.e^{-\frac{t}{B}} \Rightarrow \frac{A}{B}.e^{-\frac{t}{B}} + \frac{\left(R + r\right)}{L}.A\left(1 - e^{-\frac{t}{B}}\right) = \frac{R}{L}.E$: التحقيق	2.ب
تتحقق هذه المعادلة اذا كان :	
$A\left(\frac{1}{B} - \frac{R+r}{L}\right)e^{-\frac{t}{B}} + \frac{A(R+r)}{L} - \frac{R}{L}E = 0 \Longrightarrow B = \frac{L}{R+r}; A = \frac{RE}{R+r} = RI_0$	
- المقدار (A) : التوتر الاعظمي للمقاومة (R) .	
ا المقدار $(B^{'})$: ثابت الزمن \hat{B}	
ربط راسم الاهتزاز المهبطي انظر الشكل السابق . $B = \tau \approx 1.6ms$ ، $(u_{D})_{max} = A = 10 V$ حساب $(A) \cdot (B)$. بيانيا	2.ج
$B= aupprox 1.6ms$ ، $\left(u_R ight)_{ ext{max}}=A=10~V$ بيانيا $(A)\cdot (B)$ عساب	1.3
المقاومة الداخلية : في النظام الدائم نكتب قانون جمع التوترات	3.ب
$U_R + U_r = E = 12 \Rightarrow U_r = 12 - 10 = 2V \left(\frac{di}{dt} = 0\right)$	
$ \begin{cases} U_R = RI_0 \\ U_r = rI_0 \end{cases} \Rightarrow I_0 = \frac{U_R}{R} = \frac{U_r}{r} \Rightarrow r = \frac{U_r}{U_R}.R = \frac{2}{10} \times 12 = 2,4\Omega $	
$\tau = \frac{L}{R+r} \Rightarrow L = \tau. \left(R+r\right) \Rightarrow L = 1.6 \times 10^{-3} \left(12+2.4\right) = 0.023 \ H \qquad \qquad \vdots \left(L\right)$	
$ \begin{cases} \exists = \frac{1}{2} \text{Li}^{2} \\ \text{U}_{R} = \text{Ri} = 10(1 - e^{-t/\zeta}) \\ \exists = \frac{1}{2} \text{L} \text{U}_{R}^{2} / \text{R}^{2} \end{cases} \Rightarrow \begin{cases} t = 14s \\ \text{UR} = \text{E} = 10v \\ \text{E} = \frac{1}{2} \times 0.023 \times 10^{2} / (12)^{2} = 8 \times 10^{-3} \text{ j} \end{cases} $	4

حي قعلول −برج البحري− الجزائر Web site : <u>www.ets-salim.com</u> /Fax023.94.83.37 : Tel : 0560.94.88.02/05.60.91.22.41/05.60.94.88.05 : ™