

Etablissement privé d'éducation et d'enseignement - L'iniâtre

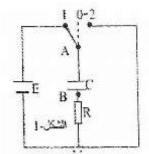
المؤسسة الخاصة للتربية و التعليم - أربينيا تر

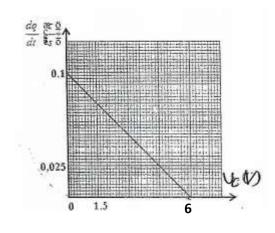
فيفري 2020	المستوى: الثالثة ثانوي علوم تجريبية
المدة: 2 سا	فرض الثلاثي الثاني في الفيزياء

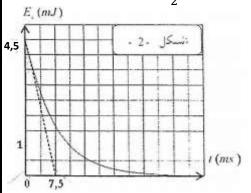
التمرين الأول: (10 نقاط)

ننجز الدارة الكهربائية الممثلة في الشكل -1 والمكونة من:

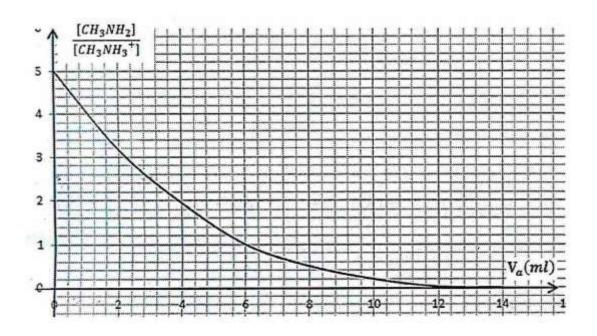
- Rمولد كهربائى للتوتر قوته المحركة E -ناقل أومى مقاومته -
- -قاطعةKالمكثفة غير مشحونة
- مكثفة سعتها C
- I. نضع البادلة في الضوع (1) (شحن المكثفة)
- $rac{dq}{dt} = -rac{\mathrm{U}_c}{R} + rac{\mathrm{E}}{R}$. باستعمال قانون جمع التوترات بين أن.


$$rac{dq}{dt} = f(\mathbf{U}_c)$$
 :بتقنية خاصة تمكنا من رسم البيان


- 2. باستعمال علاقة السؤال -1 والبيان أوجد:
 - R أ. قيمة المقاومة
 - Eب. القوة المحركة الكهربائية
- II. نضع البادلة في الوضع (2) (تفريغ المكثفة)


$$E = f(t)$$
 بواسطة تقنية خاصة نحصل على منحنى تغيرات -2

- $U_c(t)$ أكتب المعادلة التفاضلية للدارة بدلالة التوتر $U_c(t)$
- . بين أن: $Ee^{-\frac{t}{\tau}}$ حل للمعادلة التفاضلية.
- $\mathbf{U}_{c_{max}}$ ، t ، au بدلالة بدلالة المخزنة في المكثفة المخزنة في المخزنة المخزنة في المكثفة المكثفة
- . $t=rac{ au}{2}$ عند اللحظة t=0 يقطع محور الأزمنة عند اللحظة. E_C
 - 5. أوجد قيمة ثابت الزمن τ.
 - 6. أوجد قيمة سعة المكثفة C، بطريقتين مختلفتين.



التمرين الثاني: (10 نقاط)

 $CH_3NH_3^+$ هو أساسا ضعيف ينحل في الماء ليعطي شوارد الميثيل أمونيوم $CH_3NH_3^+$ هو أساسا ضعيف ينحل في الماء ليعطي شوارد الميثيل أمونيوم $CH_3NH_3^+$ هو أساسا ضعيف ينحل في مخبر ثانوية قارورة من المثيل أمين مجهولة التركيز نرمز لها بالمحلول (S). لمعرفة قيمة تركيزه قام فوج من التلاميذ بتحضير محلول (S_1) للمثيل امين ممدد 10 مرات انطلاقا من القارورة. أخذ أحد التلاميذ بواسطة ماصة حجما $V_b = 20$ من المحلول الممددوضعه في بيشرثم أضاف إليه تدريجيا بواسطة سحاحة محلول من كلور الهيدروجين تركيزه $C_a = 0.02$ ميلا في الشكل:

- 1. أكتب معادلة تفاعل المعايرة. ثم أنجز جدولا لتقدم تفاعل المعايرة.
- 2. حدد من البيان قيمة حجم نصف التكافؤ ثم استنتج حجم التكافؤ.
- . أحسب التركيز المولى C_b للمحلول الممدد ثم استنتج التركيز داخل القارورة.
 - . عند إضافة $V_a = 2.8 \ ml$ عند إضافة
- أ. أحسب PH المحلول ثم استنتج $^{+}O_{H3}$ كمية مادة شوارد الهيدرونيوم في البيشر.
 - ب. احسب نسبة التقدم النهائي au_f وماذا تستنتج؟
 - 5. للتأكد أن انحلال محلول المثيل امين في الماء غير تام نستعين بالمحلول S_1). S_1
- \mathbf{c}_{b} عبر عن نسبة تقدم التفاعل \mathbf{r}_{f} بدلالة التركيز المولى، والـ \mathbf{e}_{b} والـ \mathbf{e}_{b}
 - احسب au_f ، ماذا تستنتج?

 $k_e = 10^{-14}$, $PKa(CH_3NH_3^+/CH_3NH_2) = 10.6$:

التصحيح النموذجي

التمرين الأول (10نقاط):

I. 1)المعادلة التفاضلية:

$$U_R+U_C=$$
 E \Rightarrow R $\frac{dq}{dt}+U_C=$ E
$$\frac{dq}{dt}=-\frac{U_C}{R}+\frac{E}{R}$$
 : معادلة البيان: (2 $\frac{dq}{dt}=$ A U_C+ B

$$A = -\frac{0.1}{6}$$
 B = 0.1
$$\frac{d q}{dt} = \frac{-0.1}{6} U_C + 0.1$$

$$E = 6 \ V$$
 $R = 60 \ \Omega$ بالمطابقة بالمكثفة) (2) بضع البادلة في الوضع (2) (تفريغ المكثفة)

$$U_C + U_R = 0 \qquad \qquad R \frac{dq}{dt} + U_C = 0$$

$$\frac{dU_C}{dt} + \frac{U_C}{RC} = 0$$

$$U_{C=}Ee^{-t/\tau} \Longrightarrow \frac{\mathrm{d}U_{C}}{\mathrm{d}t} = \frac{-\mathrm{E}}{\tau}e^{-t/\tau} \Longrightarrow \mathrm{Uc} = Ee^{-t/\tau}$$
 (2)

$$- \operatorname{E} e^{-t/ au} + E e^{-t/ au} = 0$$
نعوض $0 = 0$

3) عبارة الطاقة:

$$E_{(c)} = \frac{1}{2} c U_C^2$$

$$E_{(c)}=rac{1}{2}CE^2e^{-2t/ au}$$
 , $U_{Cm}=E$
$$rac{dE_C}{dt}=-rac{E^2C}{ au}\,e^{-2t/ au}$$
 \Rightarrow (4)
$$\tan\alpha=rac{Ec(m)}{ au}=-rac{CE^2}{2t}$$

$$-\frac{C^2}{\tau}=-\frac{CE^2}{2t}$$
 \Longrightarrow $t=\frac{\tau}{2}$:ومنه: $au=15.10^{-3}$ S من البیان (5

6)حساب سعة المكثفة:

$$E_{C(m)} = \frac{1}{2} CE^2 \implies C = \frac{2E_{(c)}}{E^2} = \frac{9.10^{-3}}{36}$$

 $C = 250.10^{-6} F$

طريقة 2:

$$\tau = RC \implies C = \frac{\tau}{R}$$

$$C = \frac{15.10^{-3}}{60} = 250.10^{-6} F$$

التمرين الثاني (10 نقاط):

1) معادلة تفاعل المعايرة:

$$CH_3NH_2 + H_3O^+ = CH_3NH_3^+ + H_2O$$

$$n_b \quad n_a \qquad 0$$

$$n_b-x \quad n_a-x \qquad \chi$$

2) عند نصف الحجم المكافؤ:

$$\frac{[CH_3NH_2]}{[CH_3NH_3^+]} = 1$$

$$\frac{V_{AE}}{2} = 6ml \implies V_{AE} = 12ml$$

$$C_a V_a = C_b V_b \implies V_b = 0.012 \ mol/l$$
 : عندالتكافؤ (3

$$V_a = 2.8 \ ml \Rightarrow \frac{[CH_3NH_2]}{[CH_3NH_3^+]} = 2.6$$
 (4)
pH = 10.6 - log 2.6

$$pH = 10,19$$

$$[H_3 O^+] = 6,64 \cdot 10^{-11} mol/l$$

$$n(H_3 O^+) = [H_3 O^+] V_T = 6,64 \cdot 10^{-11} \cdot 22,8 \cdot 10^{-3}$$

$$n(H_3 O^+) = 151,3910^{-4} mol$$

$$NH_3NH_2$$
 H_3O^+ C_6V_b-X C_aV_a-X $T_6(a)=C_aV_a=2,8\cdot 10^{-3}\cdot 2\cdot 10^{-2}=5,6\cdot 10^{-5}mol$ $T_6(a)=C_aV_a=2,8\cdot 10^{-3}\cdot 2\cdot 10^{-2}=5,6\cdot 10^{-5}mol$ $T_6(H_3O^+)=n_0-n(H_3O^+)=5,6\cdot 10^{-5}-151,39\cdot 10^{-14}$ $T_6=1=100\%$

إذن تحول المعايرة تام

(5

$$CH_3NH_2 + H_2O = CH3NH_3^+ + OH$$
 $au_f = \frac{(OH^-)V}{C_bV} = \frac{10^{-14}}{[H_3O^+]C_b} = \frac{k_e \cdot 10^{PH}}{C_b} = \frac{10^{-14} \cdot 10^{PH}}{C_b}$
 $au_f = \frac{[CH_3N_2]}{[CH_3NH_3^+]} = 5$
 $au_f = 10.6 = pH - log 5$
 $au_f = 11.3$
 $au_f = \frac{10^{-14} \cdot 10^{+11.3}}{0.012} = 0.166$
 $au_f < 1$
 $au_f < 1$