

الأستاذ بوسلمة مزياني

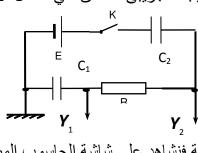
التمرين الأول: (10 نقاط).

 $r=8\varOmega$ نحقق التركيب التجريبي المبين في الشكل - 1 – حيث

عند غلق القاطعة، نتحصل على شاشة راسم الاهتزاز المهبطي على البيانين (1)و (2) بالإضافة إلى بيان المستقيم (Δ) المستخرج من ذاكرة الجهاز.

- 1- مِا هو سلوك الوشيعة في النظام الدائم ؟
- 2- أرفق كل بيان بالمدخل المناسب مع التعليل.
- . i(t) كتب المعادلة التفاضلية التي تحققها الدارة بدلالة 3
 - : المعادلة التفاضلية السابقة تقبّل حلا من الشكل $i(t) = \alpha + \beta e^{-50t}$

بالاستعانة بشروط التجربة، حدد عبارة كل من α و β ثمّ اكتب عبارة التوتر الكهربائي المشاهد على كل مدخل . 5- باالستعانة بالمعطيات حدد قيم كل من القوة المحركة الكهربائية للمولد، شدة التيار الكهربائي في النظام الدائم، قيمتي كل من R_2 و R_3 و معمل التحريض الذاتي للوشيعة .


6- في أي لحظة تصل الطاقة المخرّنة في الوشيعة إلى ربع قيمتها النهائية ؟

u(v)

والله ولمي التوفيق .

التمرين الثاني: (10نقاط)

نحقق التركيب التجريبي المحقق فقى الشكل -2-

نغلق القاطعة فنشاهد على شاشة الحاسوب المرتبط بمحول FOXY البيانين A و B .

- 1 -أرفق كل بيان بالمدخل المناسب مع التعليل.
- التوتر $u_{\mathcal{C}_1}(t)$ التوتر المعادلة التفاضلية بدلالة

الكهربائي بين طرفي المكثفة الأولى واكتبها على $u_{C_1}(t) = 0$ 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 $u_{C_2}(t)$ 0 0,8 $u_{C_3}(t) = u_{C_1}(t) + \tau_1 \frac{du_{C_1}(t)}{dt} = U_1$ 1 الشكل: $u_{C_2}(t)$ 1 ثم قارن بين $u_{C_3}(t)$ 2 ماذا تستنتج؟

- . $y_B(t)$ و $y_A(t)$ و البيانين $y_A(t)$ و 3
- سعة كل $R=1k\Omega$ الكهربائية للمولد $R=1k\Omega$ المحركة الكهربائية للمولد $R=1k\Omega$ المحركة الكهربائية للمولد مكثّفة و التوترين الكهربائين L_2 و L_2 بين طرفي كل مكثّفة في نهاية عملية الشحن.
 - 5 أثبت أن قانون جمع التوترات محقق في اللحظة t=0.1s بيانيا و حسابيا .
 - . t=0.1s في اللحظة C_2 في المكثفة ذات السّعة اللحظة المخزّنة في المكثفة ذات السّعة