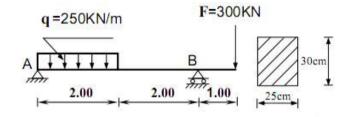
الجمهورية الجزائرية الديمقراطية الشعبية

المقاطعة: ولايات ورقلة – الوادي-غرداية

وزارة التربية الوطنية

اختبار بكالوريا تجريبية في مادة التكنولوجيا (2015)


) المـــــدة : 04.30 ســ

الشعبة : تقني رياضي (هندسة مدنية)

<u>الموضوع الأول</u>

المسالة الأولى : (06نقاط)

رافدة (AB) مقطعها مُستطيل َ cm² محملة كما يوضحه الرسم الميكانيكي :

المطلوب:

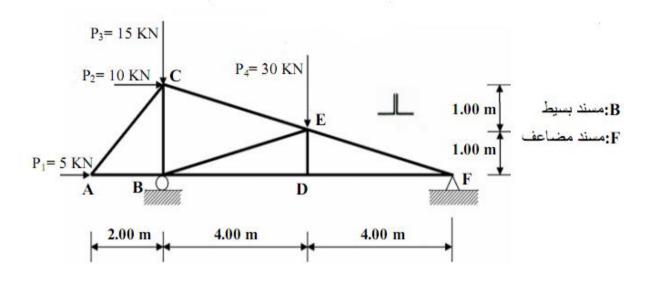
- 1 ـ احسب ردود الأفعال في المسندين A و B
- $\binom{M_f}{}$ وعزم الانحناء (T) وعزم الانحناء (2
- T_{\max} . ارسم منحنييهما ، ثم استنتج الجهد القاطع الاعظمي $M_{f\max}$. و عزم الانحناء الاعظمي
- 4 ـ تُحقِّقُ من مقاومة الرافدة للاجهاد الناظمي والإجهاد المماسي علما أن :

$$\overline{\tau} = \frac{550 \, daN}{\Box m^2} \quad \overline{\sigma} = \frac{1000 \, daN}{\Box m^2}$$

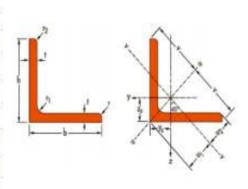
المسالة الثانية: (06نقاط)

هيكل غماء ورشة صناعية ممثل بالرسم الميكانيكي ادناه، قضبانه العلوية على شكل مجنب مزدوج (زاوية ذات أجنحة متساوية) .

المطلوب:


1- تأكد من أن النظام محدد سكونيا

- 2- أحسب ردود الأفعال في المسندين F و B.
- 3- باستعمال الطريقة التحليلية (العقد) أحسب شدة الجهود الداخلية في القضبان (AB) ، (CE) ، (CB) ، (AC)
 - (FD) ، (FE) مبينا طبيعة تأثيرها .
 - $N_{FE} = 72.15$ KN الفضيب الأكثر إجهادا (FE) يتعرض الى تأثير انضغاط 4
 - احسب مساحة مقطع القضيب الذي يحقق شرط المقاومة علما أن :

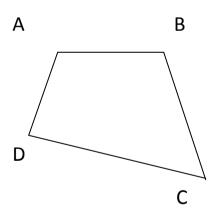

$$\bar{\sigma} = \frac{1200 \, \text{daN}}{\Box \mathbf{m}^2}$$

- ا0ستنتج المجنب المناسب لهذا القضيب من الوثيقة
- احسب مقدار تقلص القضيب (FE) علما أن معامل التمدد الطولي :

$$E = 2 \times \frac{10^6 da}{cm^2}$$

V 10 80	المقطع	الكتلة	(n	ım) ²	الأبعا
رقم المجنب	cm ²	Kg/cm	b=h	t	ys=zs
25×3	1.42	1.11	25	3	7.21
30×3	1.74	1.36	30	3	8.35
30×4	2.27	1.78	30	4	8.78
35×4	2.67	2.09	35	4	10.00
40×4	3.08	2.42	40	4	11.20
40×5	3.79	2.97	40	5	11.60

المسالة الثالثة: (٥4نقاط)

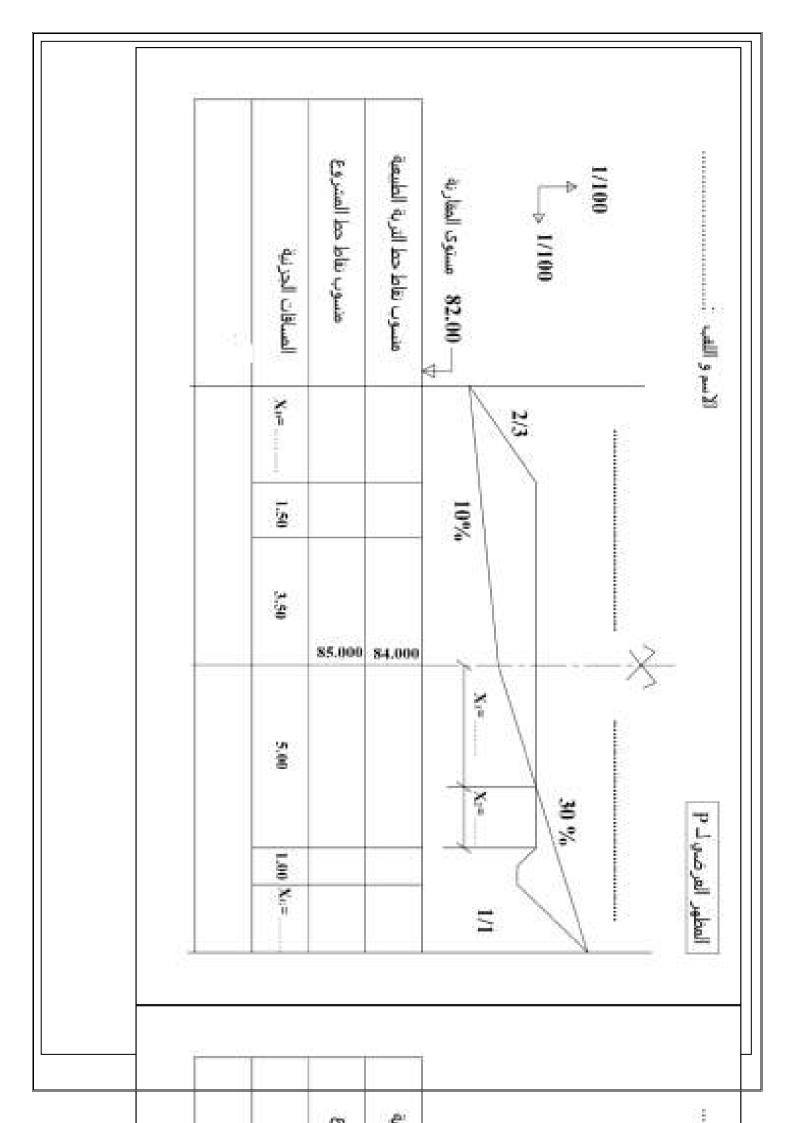

ميدان الورشة عبارة عن قطعة ارض رباعية الأضلاع

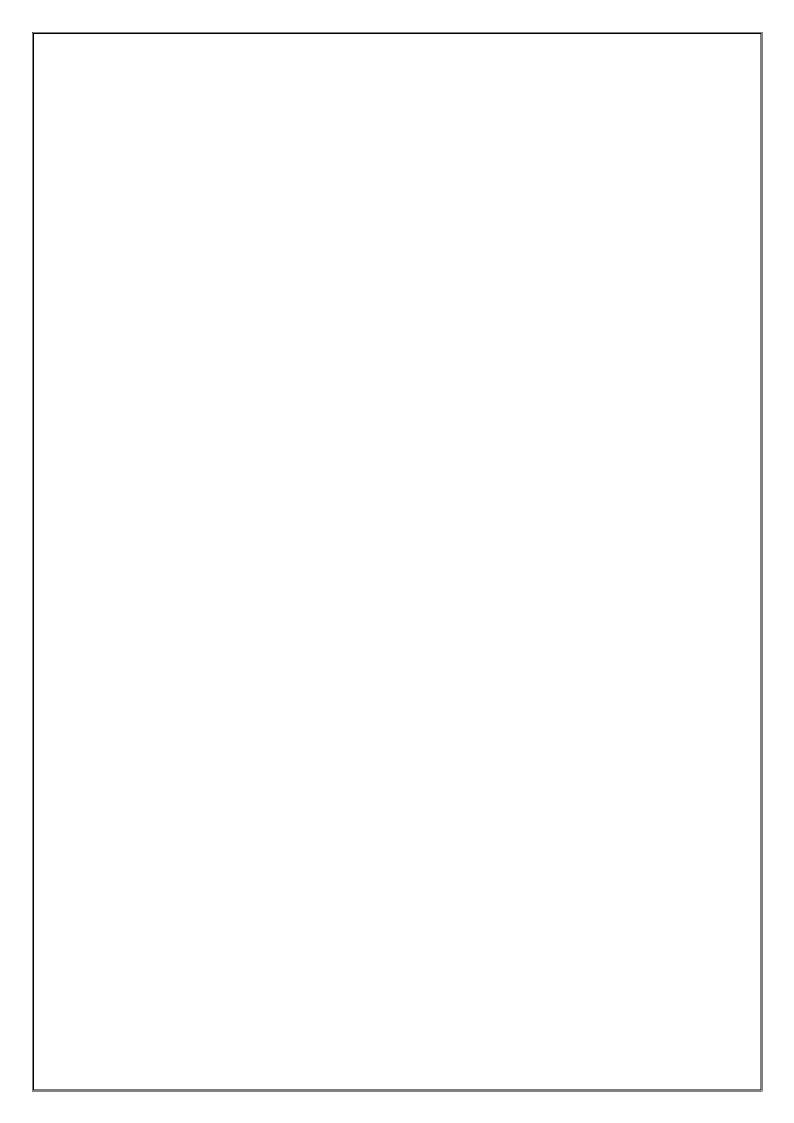
معرفة بالإحداثيات القائمة لرؤوسها (ABCD) كماهو موضح في الجدول ادناه .

النقاط	X (m)	Y (m)
Þ	60	200
В	240	200
C	200	60
О	20	60

المطلوب:

- 1. احسب مساحة ميدان الورشة باستعمال طريقة الإحداثيات القائمة.
 - \mathbf{G}_{A} و. احسب السمت الاحداثي : 2. احسب السمت
 - $\mathbf{L}_{\mathsf{A}\text{--}}$, $\mathbf{L}_{\mathsf{A}\text{--}}$, $\mathbf{L}_{\mathsf{A}\text{--}}$: احسب المسافات الأفقية
- 4. تحقق من مساحة هذا الميدان باستعمال طريقة الإحداثيات القطبية .

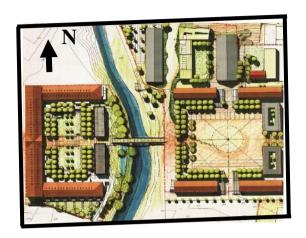



<u>المسالة الرابعة</u> : (04نقاط)

دراسة مظهر عرضي لطريق

المطلوب :

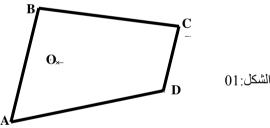
● اتمم رسم وحساب عناصر المظهر العرضي للطريق للنقطة □ على الوثيقة المرفقة



الموضيسوع التسساني

مقدمة

على ارض إحدى البلديات مساحتها S مبدئيا مخصصة لإنشاء مجمع سكني. يتمثل المشروع في إنشاء أربع عمارات من نوع (R+2) بغرف ذات النمط F3 مع إنشاء حديقة مجهزة بألعاب في الهواء الطلق للأطفال. كما تم تعيين انجاز طريق يربط المجمع بطريق ولائي وانجاز موقف مغطى للسيارات بذات المجمع.


نقترح عليك دراسة الأجزاء التالية:

أجزاء الدراسة

الجزء الأول: 3 نقاط حساب مساحة

دراسة طبوغرافية الهدف منها حساب مساحة الأرض المخصصة لإنشاء المجمع السكني.

يمثل (الشكل 01) قطعة الأرض التي سيقام عليها المشروع حيث قامت الفرقة الطبوغرافية بتحديد إحداثيات رؤوس القطعة المدونة في الجدول أدناه:

المسافة (m)	السمت الاحداثي (grade)	الإحداثيات		النقاط	لمحطة ''O'' داخل	
		Y	X		المضلع حيث	
L _{OA} =65.385	G _{OA} =241.784	448,20	60,10	A	X=100,00m	
$L_{OB} = 50.142$	G_{OB} =379.244	547,50	83,94	В	Y=500,00m	
L _{OC} =108.196	G _{OC} = 81.196	531,69	204,15	С		
L _{OD} =?	G _{OD} =?	475,54	190,67	D		

المطلوب:

- 1. أحسب المعطيات الناقصة ثم المساحة "S" لأرض المشروع بطريقة الإحداثيات القطبية
 - 2. تحقق من المساحة بطريقة الإحداثيات القائمة .

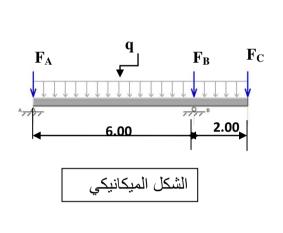
البرء الثاني: 7 نتاط مشروع طريق

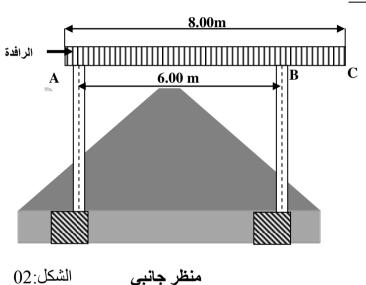
 P_6 الى P_1 الى يمتد من مشروع الطريق يمتد من

لمعرفة حركة التربة نلجأ إلى إحدى الوثائق الخطية الهامة والمتمثلة في مقطع طولي للطريق

مناسيب أرضية المشروع:

مستوى المقارنة: 90.00 m+


 $P_1 = 94,35m$


 $P_6 = 92,00 \text{m}$

العمل المطلوب: اعتمادا على مخطط التوقيع المبين في الصفحة 5/5

- اتمم رسم المقطع الطولي للطريق على الوثيقة 5/4

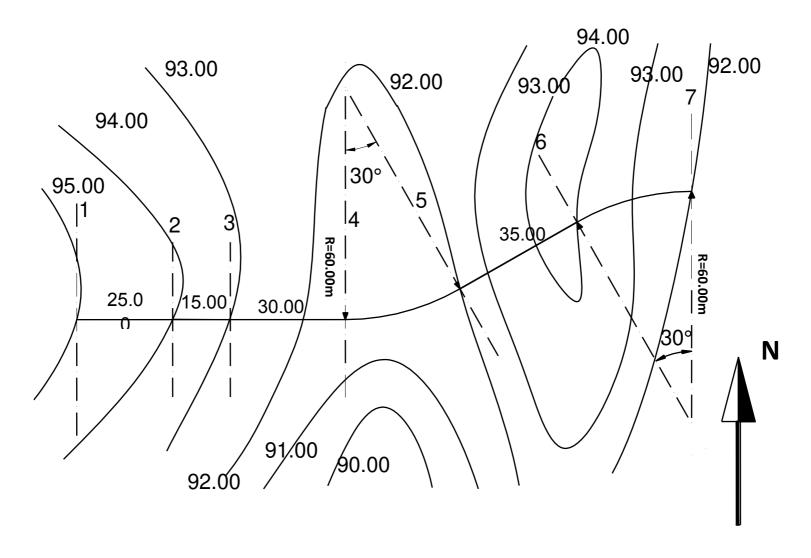
البزء الثالث: 7 نقاط دراسة رافدة معنية.

في هذا الجزء نقترح عليك دراسة إحدى روافد الموقف المخصص للسيارات في المجمع كما يبينهالمنظر الجانبي في الشكل (02) حيث نعتبر الرافدة تستند على مسند بسيط في النقطة A و ومسند ثابت في النقطة B. ونعتبرها معرضة لتأثير ثقلها الذاتي وثقل التغطية :/q=60 وثقل الهيكل الحامل للتغطية في النقط A و A والنقط و A وثقل الهيكل الحامل التغطية في النقط و A و مسند ثابت في النقط و A و مسند بسيط في النقط و A و مسند بسيط في النقط و A و مسند ثقل التغطية في النقط و A و مسند بسيط في النقط و A و مسند ثابت في النقط و A و مسند بسيط في النقط و A و مسند بسيط في النقط و A و مسند ثابت في النقط و A و مسند بسيط في النقط و A و مسند بسيط في النقط و A و مسند ثابت في النقط و A و مسند ثابت في النقط و A و مسند بسيط في النقط و A و مسند ثابت و ثقل المسند ألم و A و ثقل المسند ثابت و ثقل المسن

- A حد ردود الأفعال في المسندين A و
- 2/ حدد معادلات الجهد القاطع وعزم الإنحناء ثم استنتاج عزم الانحناء الأقصى.
- $\overline{\delta}=1600 ext{daN/cm}^2$ تحديد المجنب المناسب IPE علما أن الإجهاد المقبول

$Wx(cm^3)$ (طويلة الانحناء) عزم المقاومة المحوري	نوع المجنب
20	IPE80
34.20	IPE100
53	IPE120
77.30	IPE140

المزء الرابع: 3 نقاط الخرسانة المسلحة للمسلحة لدينا شداد من الخرسانة المسلحة ذو مقطع (40cm × 30 cm), معرض لقوة شد ناظمية مركزية ذات القيم التالية :

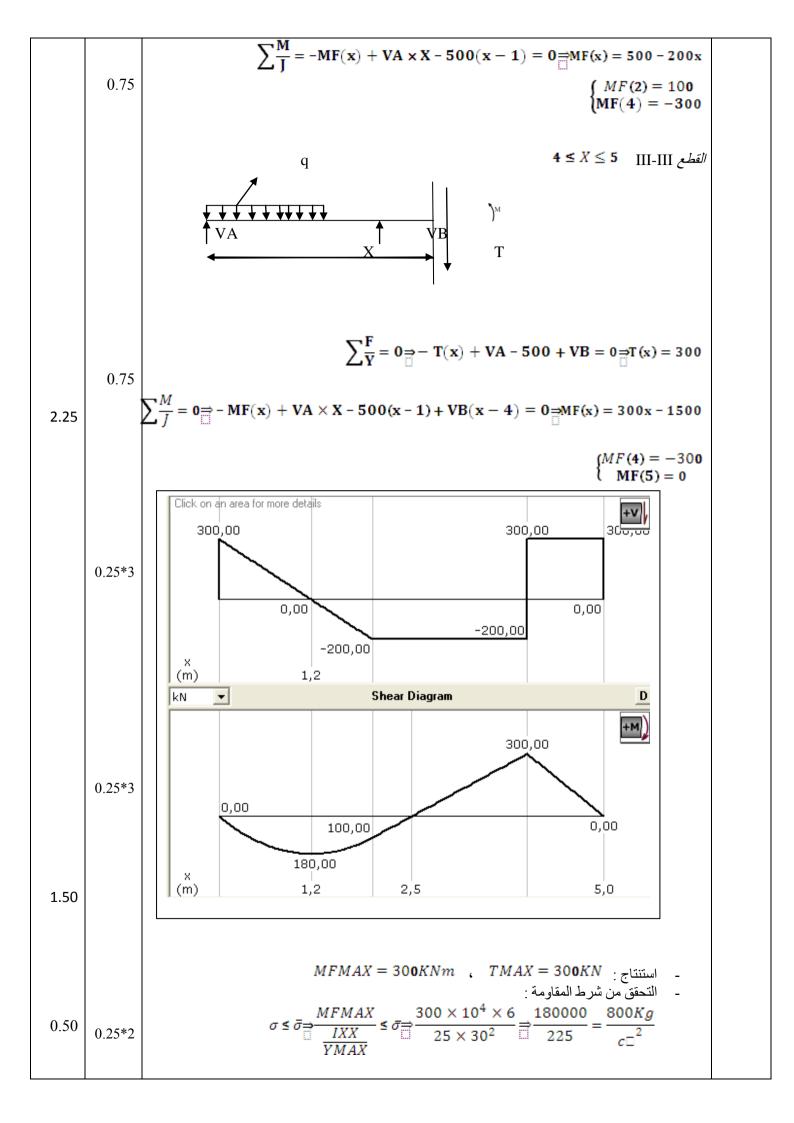

$$Nu = 0.42 MN -$$

$$Nser = 0.3 MN -$$

$$\bar{\sigma}_s = min\left\{\frac{1}{2} \times fe \; ; 90 \; \sqrt{\eta \times f_{tj}}\right\}$$

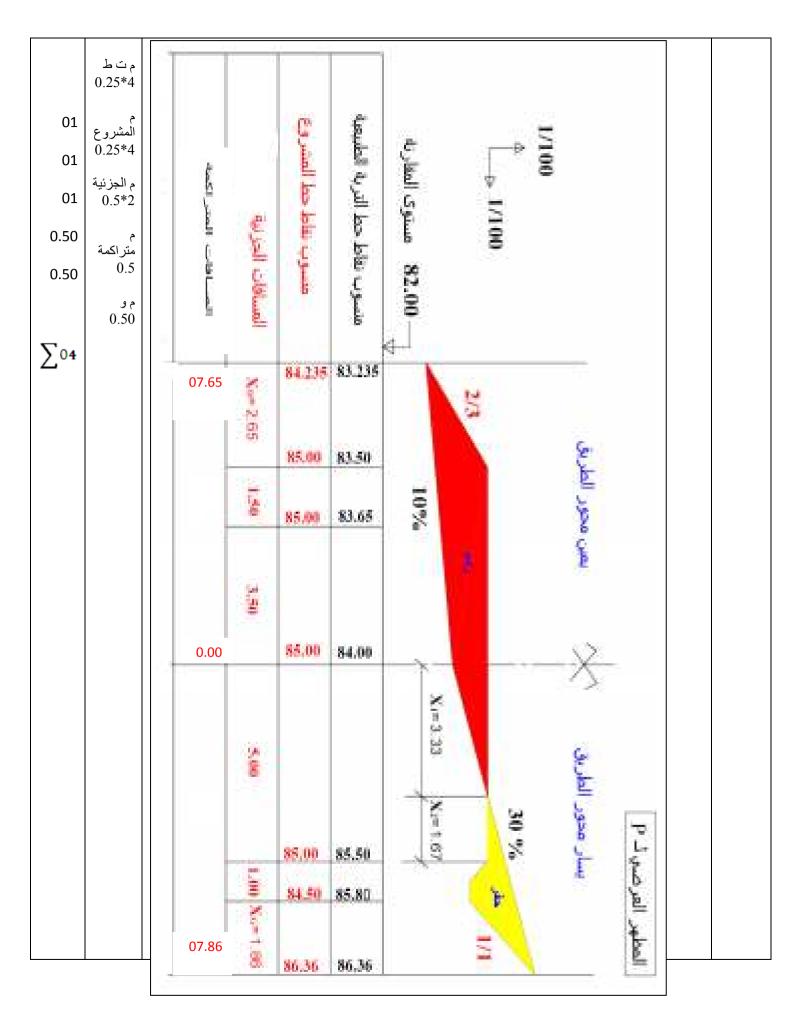
- تحديد تسليح هذا الشداد مع اقتراح رسما له

القطر Φ	وزن المتر		لمقطع بوحدة (cm²) لعدد من القضبان يقدر ب:			المقطع بوحد	11
Mm	Kg/ml	1	2	3	4	5	6
10	0.617	0.78	1.57	2.35	3.14	3.92	4.71
12	0.888	1.13	2.26	3.39	4.52	5.65	6.78
14	1.208	1.54	3.08	4.62	6.15	7.69	9.23
16	1.578	2.01	4.02	6.03	8.04	10.05	12.06
20	2.466	3.14	6.28	9.42	12.56	15.70	18.84


مخطط التوقيع بسلم 1000/1

ملاحظة هامة: تعاد هذه الورقة مع الاجابة

	-							
	-							
g: 12 H = 2	-							
مستوى المقارنة				T		<u>, </u>		
ارقام المقاطع	-	. 2	3	 	4	5	6	7
مناسيب خط لترية	99,00							
مناسيب خط لمشتروع								
المسافات الجزئية		25,00						
المسافات المتراكمة	00,00							
ميول المشروع								
التراصفوالمنعرجات								

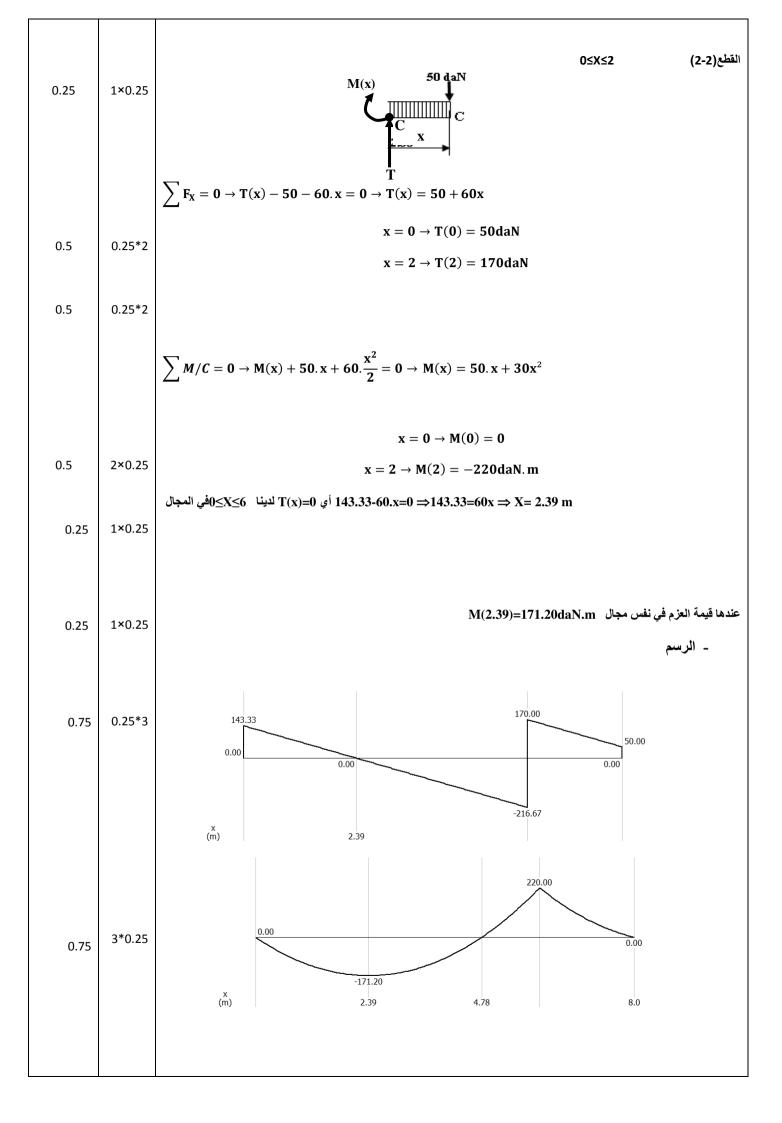

التصحيح النموذجي

		ر <i>''-پ</i>	
امة	العلا	عناصر الاجابة	المحاو
			ر
المجموع	مجزأة	الموضوع الأول المسالة الأولى : (06) F F (06) حساب ردود الأفعال : B B	
	0.25*3	VA 1.00 3.00 VB 1.00 $\sum_{\mathbf{x}} \mathbf{F}_{\mathbf{x}} = 0 \Rightarrow_{\mathbf{y}} \mathbf{H} \mathbf{A} = 0$ $\sum_{\mathbf{y}} \mathbf{F}_{\mathbf{y}} = 0 \Rightarrow_{\mathbf{y}} \mathbf{A} + VB = 800KN$	
0.75		$\sum \frac{M}{A} = -\mathbf{VB} \times 4 + \mathbf{F1} \times 1 + \mathbf{F} \times 5 \stackrel{\rightleftharpoons}{=} \mathbf{VB} = \frac{50 \square + 1500}{4} = \mathbf{500KN}$ $\sum \frac{M}{B} = VA \times 4 - F1 \times 3 + F \times 1 = 0 \stackrel{\rightleftharpoons}{=} VA = \frac{1500 - 300}{4} = \mathbf{300KN}$	
	0.75	M_{-} و T معادلات T و T القطع $0 \le X \le 2$ القطع X	
		$\sum_{\overline{X}} = 0 \Rightarrow T(\mathbf{x}) + \mathbf{VA} - \mathbf{q}\mathbf{x} + 0 \Rightarrow T(\Box) = 300 - 250\mathbf{x}$ $\begin{cases} T(0) = 300 \\ T(2) = -200 \end{cases}$	
	0.75	$\sum \frac{M}{J} = 0 \Rightarrow -MF + VA \times X - \frac{q \times x^2}{2} = 0 \Rightarrow MF(x) = 300x - 125x^2$ $\begin{cases} M(0) = 0 \\ M(2) = 100 \end{cases}$ $T(x) = 0 \Rightarrow x = \frac{300}{250} = 1.20$	
		$M(1.2) = 180$ والقطع $X \le X \le 4$ القطع الماء	
		VA X	
		$\sum_{\overline{Y}} F = -\mathbf{T}(\mathbf{x}) + \mathbf{V}\mathbf{A} - 500 = 0 \Rightarrow \Box(\mathbf{x}) = -200 \mathrm{KN}$	

		00011 - 40001
	0.5	$\frac{800Kg}{cm^2} < \frac{1000kg}{cm^2}$
		cm² cm²
01	0.5	$\tau \leq \overline{\tau} \Rightarrow \frac{3}{2} \frac{\text{TMAX}}{\Omega} \Rightarrow \frac{3 \times 300 \times 10^2}{2 \times 30 \times 25} = \frac{9000}{150} = \frac{60 \text{KN}}{\text{cm}^2}$
01	0.5	$12 \Omega \square 2 \times 30 \times 25 \qquad 150 \qquad \text{cm}^2$
		$\frac{60KN}{s} \leq \frac{550KN}{s}$
		$\frac{1}{cm^2} < \frac{1}{cm^2}$
$\nabla_{0\epsilon}$		
\sum 06		 اذن شرط المقاومة محقق
		المسالة الثانية: (06)
0.25	0.25	$b = 9 \cdot n = 6$ النظام محدد سكونيا لأن : $b = 9 \cdot n = 6$
		2 n - 3 = 12 - 3 = 9 = b
0.75	0.25*3	2) ردود الأفعال: أنظر الشكل.
	0.75*4	3) الجهود الداخلية و طبيعتها: أنظر الشكل.
03	0.75	4) المجنب المناسب للقضيب (FE):
		$\sigma = N/S < \overline{\sigma} \Rightarrow S > N/\overline{\sigma} \bullet$
		$S_{min} = 7215/1200 = 6.01 \text{ cm}^2$
		• المجنب المناسب من الجدول:
0.1	01	$40x4 => S = 3.08x2 = 6.16 \text{ cm}^2$
01		 مقدار تقلص : ∆L=N.L/S.E
	01	$\Delta L=N.L/S.E = -7215x412/6.16x2x10^6 = -0.24 cm$
01	01	
∇		0, 15,0 4, 6, 8, 10,
\sum_{06}		100 LC
		2, 10,0
		10,31 (C)
		30,0
		↓ E
		1, 0,0 (T)
		12,5 (C)
		61,85 (C) 72,15 (C)
		0,0
		5,0 F Fx 15,0
		5,0 (C) 55,0 (T) 555,0 (T)
		By 27,5

		المسالة الثالثة: (04)
		1) حساب المساحات :
		1 - حساب مساحة المضلع بطريقة الإحداثيات القائمة:
		$S = \frac{1}{2} \sum \left[X n \left(Y n-1 - Y n+1 \right) \right]$
		$S = \frac{1}{2} \left[X_A (Y_D - Y_B) + X_B (Y_A - Y_C) + X_C (Y_B - Y_D) + X_D (Y_C - Y_A) \right]$
		$S = \frac{1}{2} [60(60-200) + 240(200-60) + 200(200-60) + 20(60-200)] = \frac{1}{2} [50400]$
0.5	0.5	$S = 25200 \text{m}^2$
		GAD_، GAC_GAB حساب کل من
		Δx Δy الربع Tg(g) g G السمت الإحداثي
1.50	0.5*3	180 0 GAB=100 gr 140 -140 2 1 50 GAC = 150 gr
1.50	0.5 5	-40 -140 3 0.2857 17.72 GAD = 217.72gr
		3 - حساب الأطوال AD ،AC ،AB :
		. AD AO AO OIGE ST COME -S
		$L = \sqrt{\Delta X^2 + \Delta Y^2}$
		AB=180m,
	0.5*3	AC = 197.99m,
1.50	0.5*3	AD = 145.60m
		4 - حساب مساحة هذا المضلع باستعمال طريق الإحداثيات القطبية :
		$S = \frac{1}{2} \left[\sum L_n \times L_{n+1} \times \sin(G_{n+1} - G_n) \right]$
	0.5	$S = 0.5[ABxACsin (GAC-GAB) + ACxADsin(G_{AD}-GAC)] = 0.5(25200 + 25200)$
0.5	0.3	S = 25200m ²
$\sum_{0.4}$		
\sum_{04}		السالة الرابعة: (04)
		 • اتمم رسم وحساب عناصر المظهر العرضي للطريق للنقطة □ على الوثيقة المرفقة
		04
		04
	Ī	

الاجابة النموذجية * الموضوع الثاني:


الجزء الاول: 3 ن

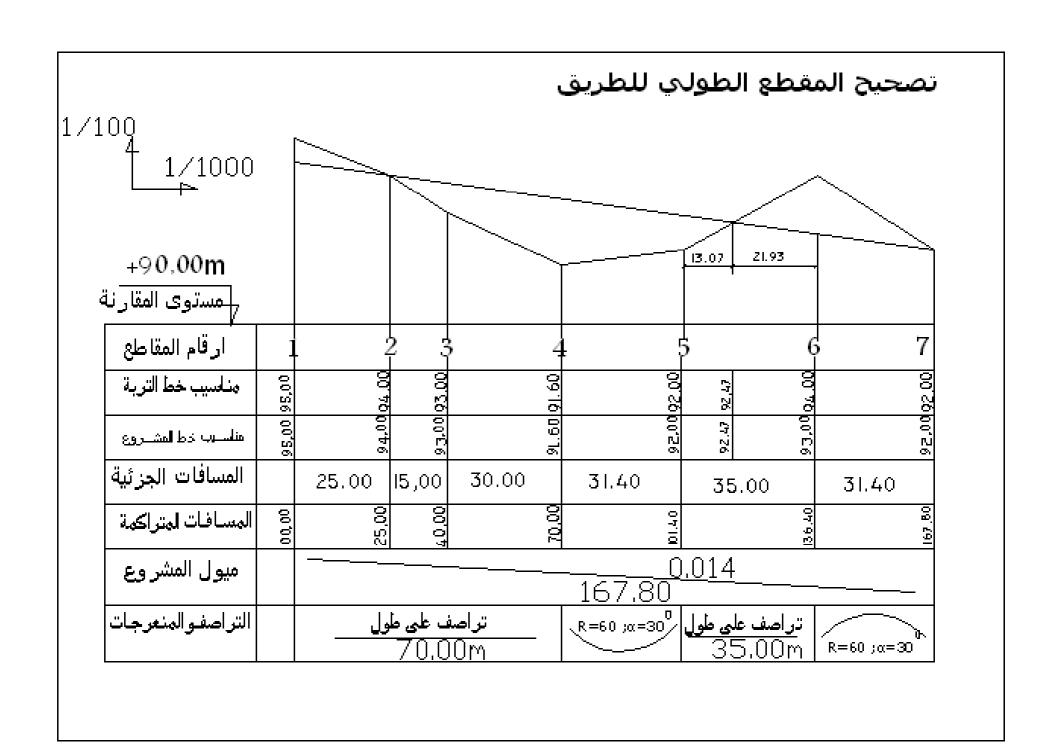
المجموع	التقويم	التصحيح
0.5	2×0.25	$\Delta X_{OD} = X_D - X_O = 90.67 > 0$; $\Delta Y_{OD} = Y_D - Y_O = -24.46 < 0$;
0.5	2×0.25	G_{OD} =200-g; $g = tan^{-1} \left \frac{\Delta X}{\Delta Y} \right = 3.706 o g = 83.225 grad$
0.5	0.5	G=200-83.225=-116.774 grad
		L_OD = $\sqrt{\Delta X^2 + \Delta Y^2}$ = 93.911m
0.5	0.5	$S=\frac{1}{2}\left[\sum L_{n}\times L_{n+1}\times \sin(G_{n+1}-G_{n})\right].$
0.5	0.5	$S = \frac{1}{2} [L_{OA} \times L_{OB} \times \sin(G_{OB} - G_{OA}) + L_{OB} \times L_{OC} \times \sin(G_{OC} - G_{OB}) + L_{OC} \times L_{OD} \times \sin(G_{OD} - G_{OC}) + L_{OD} \times L_{OA} \times \sin(G_{OA} - G_{OD})] = 9638.3628 \text{m}^2$
0.5 نقاط	0.5	مجموع الجزء الأول

الجزء الثاني: 7ن دراسة جزء من مشروع الطريق يمتد من P1 إلى P6

تمثيل المهر الطولي				
التصحيح				
*مناسيب ارضية المشروع (بالأحمر)				
*المسافات الجزئية				
*المسافات المتراكمة				
*ميول المشروع(بالأحمر)				
*التراصف والمنعرجات				
*خط الأرضية الطبيعية				
*خط أرضية المشروع (بالأحمر)				
*وضعية المقطع الوهمي بالأحمر				
*الحفر بالأصفر				
*الردم بالأحمر				

المجموع	التقويم	التصحيح
		- تمثيل القوى على الشكل الميكانيكي .
		50 daN 60 daN/m 50 daN 50 daN $R_{\rm BY}$ $R_{\rm BY}$ $R_{\rm BY}$
		$\sum F/x = 0 \rightarrow H_{BX} = 0$
0.25	0.25*1	$\sum_{A} F/y = 0 \rightarrow R_{AY} + R_{BY} = 630 daN$
0.25	1×0.25	
0.25	1×0.25	$\sum M/A = 0 \to -R_{BY} \times 6 + 50 \times 6 + 50 \times 8 + 480 \times 4 = 0 \to R_{BY} = 436.67 daN$
0.25	1×0.25	$\sum M/A = 0 ightarrow R_{AY} imes 6 - 50 imes 6 + 50 imes 2 - 480 imes 2 = 0 ightarrow R_{AY} = 193.33$ da
0.25	0.25*1	0≤X≤6 (1-1) القطع 10−1 (1-1) القطع 20−1 (1-1)
0.25		$\sum F_X = 0 \rightarrow -T(x) + R_{AY} - 50 - 60. x = 0 \rightarrow T(x) = 143.33 - 60x$
0. 5	0.25*2	$x = 0 \rightarrow T(0) = 143.33daN$ $x = 6 \rightarrow T(6) = -216.67daN$
		$\sum M/C = 0 \rightarrow -M(x) + 193.33.x - 50.x - 60.\frac{x^2}{2} = 0 \rightarrow M(x) = 143.33.x - 30x^2$
0. 5	0.25*2	$\mathbf{x} = 0 \to \mathbf{M}(0) = 0$
		$x = 6 \rightarrow M(6) = -220 daN. m$

5- استنتاج قيمة العز الاقصى	0.5	0.5
من المخطط نجد قيمة العزم الأقصى : Mmax = -220 = 220 daN.m		
6- تحديد المجنب المناسب		
إنطلاقًا من شرط المقاومة:	0.5	0.5
$\sigma \leq \overline{\sigma} \rightarrow \frac{M_{max}}{W_X} \leq \overline{\sigma} \rightarrow W_X \geq \frac{M_{max}}{\overline{\sigma}} = \frac{220 \times 10^2}{1600} = 13.75 cm^3$		
من الجدول نختار المجنب: IPE80	0.5	0.5


الجواب الرابع: 3 ن

حساب التسليح الطولي الحالة الحدية النهائية

$$f_{\rm su} = f_{\rm e} / \gamma_{\rm s} = 400 / 1.15 = 348 \ {\rm MPa}$$

0.5

 $A_{\rm u} = N_{\rm u} / f_{\rm su} = 4200 / 348 = 12.07 \ {\rm cm}^2$
 $: lash ideal in the constant of the consta$

