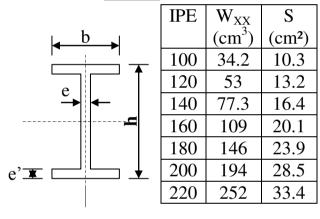
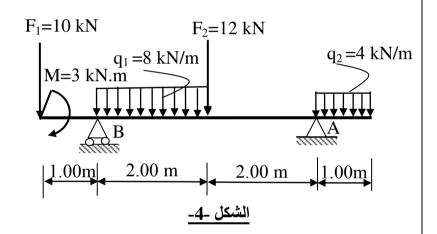
الشعبة: تقني رياضي	ية الديمقراطية الشعبية	الجمهورية الجزائر مديرية التربية لولاية عنابة
	•	امتحان بكالوريا تجريبي
<u>دورة :ماي 2014</u>		امتحان بحاور یا تجریبی
<u>المدة:04 سا و 30 د</u>		اختبار في مادة: التكنولوجيا(هندسة مدنية)
	ختار أحد الموضوعين التاليين:	على المترشح أن ب
	<u>التاليين:</u> موضوع الأول	<u>11</u>
	1 testi	المسألة الأولى: (02 نقطتان)
28	-	قضيب من المعدن متغير المقطع مثبت والمعرض لقوى ك
$F_1=8$ tf	$F_2 = \underbrace{12 \text{ tf}}_{F_3 = 6} \text{ tf}$	E=2.1 x 10 ⁶ Kgf/cm ² : حيث
		$S=400 \text{ mm}^2$
A	1 1	<u>العمل المطلوب:</u> 1. أحسب الجهود الداخلية والتشوهات على طول القضيب
€60 mm	50 mm 80mm	 أحسب التشوه الكلي للقضيب.
	الشكل -1_	·
	$F_2=40 \text{ kN}$	المسألة الثانية: (05 نقاط) نريد دراسة نظام مثلثي تحت تأثير قوى مركزة والذي يرتكز
عل -2-	ِ حَلَى مُسَدِينَ	ريد در الله نظام منسي تحت تابير فوى مركزه والذي يرتكر (A) حيث:(A) مضاعف ، (B) بسيط ، الشكل -2-
_ 	E	العمل المطلوب:
m 000 m		ـــــــــــــــــــــــــــــــــــــ
$F_1 = 30 \text{ kND}$		2- أحسب قيم ردود الأفعال عند المسندين (B)، (A).
	\mathbb{A}	3- أحسب الجهود الداخلية في القضبان مع تعيين
		طبيعتها مستعملا الطريقة التحليلية (عزل العقد).
3.00 m	$ \oint F_3 = 10 \text{ kN} $ $F_4 = 20 \text{ kN}$	4- دون النتائج في جدول.
		5- إذا كانت جميع القضبان متشابهة المقطع دائرية
	2.00	مفرغة الشكل -3 تحقق من مقاومة القضيب AC
2.00 m 11	3.00 m 3.00 m	علما أن :
		$\sigma = 1600 daN / cm^2$ و $N_{AC} = 353.55 \text{ KN}$
		6- أحسب الاستطالة ΔL لنفس القضيب
	الشكل <u>-3</u> ـ الشكل	$=2 imes10^6~\mathrm{daN/cm}^2$: حيث أن معامل المرونة الطولي
	Φ_1 =12.5 cm	
$ - \Phi_1 - $ $- \Phi_2$	Φ_2 =14 cm	
	<u> 1 \ 7</u>	الصق


المسألة الثالثة: (05 نقاط)


نقوم بدراسة رافدة معدنية مقطعها مجنب IPE (الجدول 1) ، تحت تأثير حمولتين موزعتين بانتظام وقوتين مركزتين و عزم (الشكل 4) حيث: (A) مسند مضاعف (مزدوج) و (B) مسند بسيط .

<u>العمل المطلوب:</u>

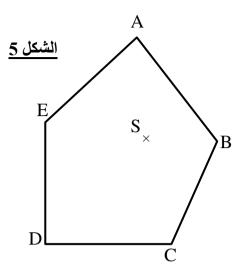
- 1- أحسب قيم ردود الأفعال عند المسندين A و B .
- (M_f) وعزم الإنحناء ((T) وعزم الإنحناء ((M_f)).
 - M_{fmax} التقاطع واستنتج M_{fmax}
- (M_f) وعزم الإنحناء (M_f).
- . $M_{\rm fmax}$ =15.50KN.m و عزم الانحناء الأعظمي $\overline{\sigma}$ =1600daN / cm^2 علما أن
 - استنتج رقم المجنب المناسب.

<u>الجدول 1</u>

المسألة الرابعة: (03 نقاط)

أتمم المظهر العرضي P المبين على وثيقة الإجابة رقم 1 (أظهر تفاصيل الحساب على ورقة الإجابة)

المسألة الخامسة: (02 نقاط)


- 1 أذكر مختلف الطبقات المكونة لقارعة الطريق من الأسفل إلى الأعلى مستعينا برسم تخطيطي.
 - 2. صنف الجسور حسب المواد المكونة له و الأهمية.

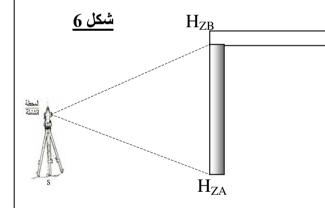
<u>الصفحة 2∖7</u>

المسألة السادسة: (30 نقطتان)

1. قامت فرقة طبو غرافية بوضع جهاز المحطة الشاملة على S فتحصلنا على القراءات المدونة في الجدول S المطلوب:

أ. أحسب مساحة القطعة الأرضية ABCDE بواسطة الإحداثيات القطبية.

<u> 2 09</u> -	7
السمت الاحداثي	


السمت الاحداثي (gr)		المسافات (m)	
G_{SA}	393.64	SA	63.00
G_{SB}	103.36	SB	47.18
G_{SC}	184.09	SC	68.87
$G_{ m SD}$	249.50	SD	93.63
$G_{ m SE}$	308.85	SE	66.32

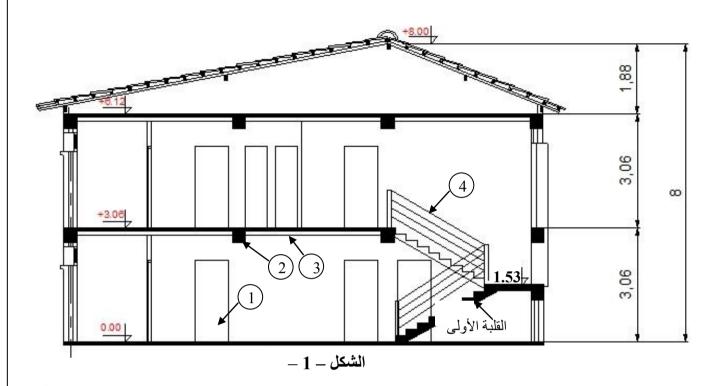
جدول 3

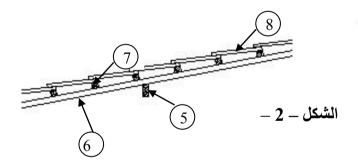
$X_{S}(m)$	$Y_{S}(m)$
400.00	400.00

ب. علما أن إحداثيات المحطة S مبينة في الجدول 3.

• أحسب إحداثيات A.

2. بعد مراقبة شاقولية عمود (الشكل 6) ارتفاعه AB=5.40m. تبين أنه منحرف بقيمة d=0.18cm


علما أن القراءة للزاوية الأفقية عند النقطة A هي H_{ZA} =261.34gr.


• أوجد قيمة القراءة للزاوية الأفقية H_{ZB} عند النقطة B.

الموضوع الثاني

المسألة الأولى: (02 نقاط)

يعطى الرسمين المبينين في الشكل -1 و الشكل -2

العمل المطلوب:

- 1 حدد التسمية الصحيحة للشكل 1 : مخطط التوزيع ، مقطع شاقولي ، أو مخطط سطح .
 - 2- سم العناصر المرقمة من1 الى4 ثم أذكر دور العنصر 3 للشكل-1-
 - 3 سم العناصر المرقمة من5 الى8 ثم أذكر دور العنصر 5. للشكل-2-
 - 4- حدد عدد الدرجات و طول النائمة للقلبة الأولى، علما أن:

h=17cm والخطوة المتوسطة h=

<u>الصفحة 4∖7</u>

المسألة الثانية: (03 نقاط)

لدينا قطعة أرض مخصصة لمشروع بنايات سكنية و المبينة على الشكل - 3 -

إحداثياتها القائمة مبينة في الجدول - 1 -

وإحداثياتها القطبية مبينة في الجدول - 2 -

العمل المطلوب:

- 1- أحسب مساحة القطعة ABCD.
- G_{CB} ثم احسب G_{AD} , G_{CD} ثم احسب -2
- استنج G_{AD}, G_{CD} تع احسب

- - شكل _ 3_
- . BCD مساحة القطعة، d_{CB} عثم احسب الزاوية (lpha) والمسافة d_{CB}
- 4- علما أن مساحة القطعة ABD تقدر بـ: 29777.52m² تحقق من مساحة القطعة ABCD

الجدول – 2 -				
الأسمت(gr)		المسافات(m)		
G_{AB}	125.91	AB	196.59	
G_{AD}	?	AD	329.89	
G_{CD}	?	CD	302.47	
G_{CB}	?	CB	?	

الجدول – 1 -				
النقاط	X(m)	Y(m)		
A	221.35	998.73		
В	401.88	920.91		
С	523.82	668.84		
D	221.35	668.84		

المسألة الثالثة: (03 نقاط)

أتمم المظهر الطولي المبين على وثيقة الإجابة رقم 2 (أظهر تفاصيل الحساب على ورقة الإجابة)

المسألة الرابعة: (04 نقاط)

لدينا شداد (tirant) من الخرسانة المسلحة مقطعه (tirant) معرض لقوة شد مطبقة في مركز ثقله.

المعطيات: حالة التشققات ضارة جدا

Nu = 0.236 MN

Nser = 0.168MN

الفو لاذ من نوع FeE400 عالي التلاحم.

• $f_e = 400 \text{ MPa}$. $\gamma_s = 1.15$

 $f_{\rm c28}$ = 25 MPa : مقاومة الخرسانة, η =1.6

المطلوب:

- 1. أحسب مقطع التسليح للشداد.
- 2. تحقق من شرط عدم الهشاشة.
 - 3. اقترح رسما للتسليح.

قوانين خاصة بحساب الشداد

$$A_u = rac{N_u}{rac{f_e}{\gamma_s}}$$
 و $\sigma_s = rac{f_e}{\gamma_s}$:ELU الحالة الحدية النهائية

الحالة الحدية للتشغيل ELS:

الإجهادات في الفولاذ

• تشققات غير ضارة: نكتفي بـ: ELU

 $\sigma_{\rm s}=$ min { 2/3 . $f_{\rm e}$; $110\sqrt{\eta f_{ij}}$ }

 $\sigma_{\rm s} = \min \{ 1/2 f_{\rm e} ; 90 \} \sqrt{\eta f_{ij}} = 1/2 \sigma_{\rm s}$

ftj = 0.6 + 0.06 fcj : f_{tj} المميزة للشد حيث المقاومة المميزة للشد

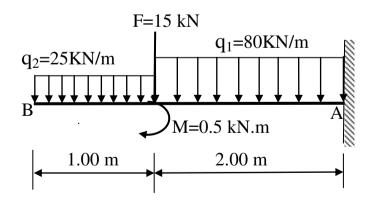
 $A_{ser} = \frac{N_{ser}}{\sigma_s}$ مقطع التسليح:

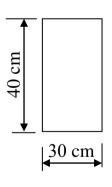
 $B.f_{t28} \leq As.$ fe غدم الهشاشة:

<u>الصفحة 5∖7</u>

<u> جدول 3</u>

المقطع بـ: (cm²) لعدد من القضبان يتراوح من :				القطر		
8	7	6	5	4	3	mm
4.01	3.51	3.01	2.51	2.01	1.50	8
6.28	5.49	4.71	3.92	3.14	2.35	10
9.05	7.92	6.78	5.65	4.52	3.39	12
12.31	10.77	9.23	7.69	6.15	4.62	14
16.08	14.07	12.06	10.05	8.04	6.03	16
25.13	21.99	18.84	15.70	12.56	9.42	20
39.27	34.36	29.45	24.54	19.63	14.73	25
64.34	56.26	48.25	40.21	32.17	24.12	32
100.53	87.96	75.39	62.83	50.26	37.70	40


المسألة الخامسة: (40نقاط)


نريد دراسة رافدة المثبتة عند: A (اندماج) وحرة عند: B ، وخاضعة إلى الحمولات كما هو مبين في الشكل 4.

العمل المطلوب:

- 1 أحسب قيم ردود الأفعال عند الاندماج A.
- 2 أكتب معادلات الجهد القاطع (T) وعزم الانحناء (M_f) على طول الرافدة.
 - . (M_f) وعزم الانحناء (T) وعرم الانحناء -3
 - $T_{\text{max}} = 200KN$ و $M_{\text{max}} = 247.50KN.m$.4
- أحسب الإجهاد الناظمي و الإجهاد المماسي ثم تحقق من مقاومة الرافدة علما أن:

 $\overline{ au}=36kgf/cm^2$ الإجهاد الناظمي المسموح به $\overline{\sigma}=500Kgf/cm^2$ الإجهاد الناظمي المسموح به

الشكل 4

<u>الصفحة 6∖7</u>

المسألة السادسة: (4)نقاط)

نرید دراسة هیکل معدني علی شکل نظام مثلثي تحت تأثیر أربعة قوی مرکزة والمبین في الشکل 5 والذي يرتکز علی مسندین (A) و (B) . حیث:(A)مسند مضاعف (مزدوج) ، (B)مسند بسیط.

العمل المطلوب:

1 تأكد من أن النظام محدد سكونيا.

2 . أحسب ردود الأفعال في المسندين.

3 أحسب الجهود الداخلية في جميع القضبان ،

مستعملا الطريقة الحسابية (عزل العقد).

- ثدون النتائج في جدول.

4. علما أن القضبان المستعملة في النظام المثلثي هي مجنبات على شكل $_{\rm L}$ و أن الجهد الناظمي في القضيب الأكثر إجهادا يقدر بـ: $N_{\rm DE} = 116.67~{\rm KN}$

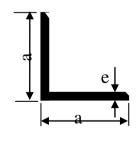
 $\overline{\sigma} = 2400 daN / cm^2$ و الإجهاد المسموح به

- \checkmark أحسب مساحة المقطع ثم استنتج رقم المجنب المناسب .
- $E=2.10^4\,daN/mm^2$ أحسب تقاص القضيب علما أن معامل المرونة الطولي

<u> جدول 4</u>

 $F_1 = 100 \text{ kN}$

 $F_3 = 40 \text{ kN}$


2.00m

<u>الشكل 5</u>

50m

 $F_4 = 20 \text{ kN}$

رقم	المقطع	الكتلة	الأبعاد	
المجنب	cm ²	kg/m	a	e
30×3	1.74	1.36	30	3
30×4	2.27	1.78	30	4
30×5	2.78	2.18	30	5
35×3	2.04	1.60	35	3
35×4	2.67	2.09	35	4
35×5	3.28	2.57	35	5
40×4	3.08	2.42	40	4
40×5	3.79	2.97	40	5
40×6	4.48	3.52	40	6

<u>الصفحة 7∖7</u>

 $F_2 = 60 \text{ kN}$

2.00m

В