الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية عقون محند اليزيد- اغيل اعلي ،

ثانوية عبد المالك فضلاء - تازمالت ،

و ثانويتي ذبيح شريف و ثيحارقاثين – أقبو

دورة : ماي 2022

وزارة التربية الوطنية

مديرية التربية لولاية بجاية

امتحان بكالوريا تجريبية

الشعبة: رياضيات

اختبار في مادة : الرياضيات المدة : 4 ساعات ونصف

على المترشح ان يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (4 نقاط)

يحتوي صندوق U_1 على تسع كريات تحمل الأرقام 2 ، 2 و 3 و يحتوي صندوق U_2 على تسع كريات منها أربعة خضراء تحمل كل منها الرقم 3 و خمس كريات حمراء تحمل الأرقام 1 ، 2 ، 2 ، 3 و 4 و (الكريات لا يمكن التمييز بينها باللمس)

. n نسحب عشوائيا كرية من الصندوق U_1 و نسجل رقمها و ليكن

إذا كان n=2 : نسحب عشوائيا من الصندوق U_2 كريتين على التوالي من دون إرجاع.

. U_2 في آن واحد ثلاث كريات من الصندوق و اذا كان n=3

نعتبر الحدثين التاليين:

." الكريات المسحوبة من الصندوق U_2 لها نفس اللون ... A

الكريات المسحوبة من الصندوق U_2 تحمل نفس الرقم ... B

- . B ثم أحسب P(B) احتمال الحدث $P(A) = \frac{19}{54}$ (1)
 - $.P(A \cap B) = \frac{55}{378}$ بين أن
- U_{2} ليكن X المتغير العشوائي الذي يرفق بكل سحبة، عدد الكريات الحمراء المسحوبة من الصندوق (2
 - عين قانون احتمال المتغير العشوائي X ثم أحسب E(X) أمله الرياضياتي.

التمرين الثاني: (4 نقاط)

- (E) نعتبر في $\mathbb{Z} \times \mathbb{Z}$ المعادلة (E) ذات المجهول (x,y) نعتبر في (E)
- (E) المعادلة على الثنائية (x;y) حلا للمعادلة على المعادلة (x;y) الثنائية (x;y) على المعادلة (x;y) المعادلة (x;y)
- عدد طبيعي يكتب $\overline{43}$ في نظام التعداد الذي أساسه x و يكتب $\overline{98}$ في النظام التعداد الذي أساسه x حيث α (2 $y \le 15$ و $x \le 35$
 - عين القيم الممكنة لـ x و x ثم أكتب α في النظام العشري •
 - 3) أ) أدرس و حسب قيم العدد الطبيعي n بواقي قسمة العدد 4^n على 9
 - .1444 x + 4 y + 7 \equiv 0[9] حيث يكون: (E) حلول المعادلة (X; y) من (X; y) من الثنائيات
 - نعتبر العددان الطبيعيان a=9n+8 و a=9n+8 و a=9n+8 نعتبر العددان الطبيعيان a=9n+8 عنبر العددان الطبيعيان a=9n+8
 - d ما هي القيم الممكنة ل \bullet
 - d=5 عين مجموعة قيم العدد الطبيعي n يحيث يكون d=5
 - $B = 4n^2 + 7n + 3$ و $A = 9n^2 + 17n + 8$ من أجل كل عدد طبيعي n نضع (5
 - B بين أن العدد (n+1) يقسم كل من العددين A و
 - B إستنتج حسب قيم n القاسم المشترك الأكبر للعددين A و

اقلب الصفحة

التمرين الثالث: (5 نقاط)

$$u_n = \int\limits_0^1 \left(1-x
ight)^n e^x dx$$
 : ب n عدد طبیعي عدد المعرفة أجل كل عددية المعرفة المعرفة أجل كل عدد طبیعي

- . u_1 مسب يا ثم باستعمال التكامل بالتجزئة احسب u_0
- . $0 \le u_n \le e-1$: n بين أنه من أجل كل عدد طبيعي (1
- . متقاربة (u_n) متتالية (u_n) متتالية أن المتتالية (u_n) متقاربة ،
- (u_n) غيل عدد طبيعي $\frac{1}{n+1} \le u_n \le \frac{e}{n+1}$: n عدد طبيعي عدد طبيعي (ج
 - u_{2} عيمة يت استعمال التكامل بالتجزئة بين أن $u_{n+1} = (n+1)u_{n} 1$: باستعمال التكامل بالتجزئة بين أن
 - $A = \int_{0}^{1} (2x^{2} 3x + 1)e^{x} dx$ نضع (4
- $2x^2 3x + 1 = \alpha(x-1)^2 + \beta(x-1)$: \mathbb{R} من x من اجل كل x من α و α بحيث من اجل كل α من α استنتج القيمة المضبوطة للعدد الحقيقي α .

التمرين الرابع: (7 نقاط)

- $f(x)=x-(x^2+1)e^{-x+1}$: بعتبر الدالة العددية f المعرفة على المجموعة $\mathbb R$
- $\|\vec{i}\| = \|\vec{j}\| = 1$ نسمي ($o; \vec{i}; \vec{j}$) المنحنى الممثل للدالة f في المستوي المنسوب للمعلم المتعامد والمتجانس (C_f) حيث
 - $\lim_{x \to +\infty} f(x) = +\infty$ وبين أن $\lim_{x \to -\infty} f(x)$ أحسب (1
 - $f'(x) = 1 + (x-1)^2 e^{-x+1}$: x عدد حقیقی عدد من أجل كل عدد (أ
 - ب) استنتج اتجاه تغیر الدالة f ثم شکل جدول تغیر اتها.
 - ين أن المستقيم (Δ) ذي المعادلة y=x مقارب مائل للمنحنى (C_f) بجوار $\infty+$ ، ثم ادرس الوضع النسبي (C_f) بين أن المستقيم (Δ).
 - $1.8 \prec \alpha \prec 1.9$ بين أن المعادلة f(x) = 0 تقبل حلا وحيدا α بحيث: (3
- - 5) أكتب معادلة ديكارتية للمستقيم (T) مماس المنحنى (C_f) عند النقطة التي فاصلتها 1.
 - (C_f) و (T) ، (Δ) أحسب f(0) ثم أنشئ (Δ)
 - (E): f(x) = x + m التالية: x التالية: m عدد وإشارة حلول المعادلة ذات المجهول x التالية:
 - $I_n = \int_0^1 x^n e^{-x+1} dx$, n نضع من أجل كل عدد طبيعي غير معدوم II
 - I_1 بين أن الدالة المعرفة بـ: $G(x) = -(x+1)e^{-x+1}$ هي دالة أصلية للدالة المعرفة بـ: $G(x) = -(x+1)e^{-x+1}$
 - I_{2} باستعمال المكاملة بالتجزئة بين أن $I_{n+1}=-1+(n+1)$ لكل عدد طبيعي غير معدوم I_{n} ثم أحسب (2
 - (3) أحسب بـ cm^2 مساحة الحيز المستوي المحدد بالمنحني (C_f) والمستقيمين الذين x=1 و x=0 : معادلتيهما

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (4 نقاط)

يحتوي كيس على n+8 كرية ℓ نفرق بينهما باللمس، ℓ كريات بيضاء و ℓ كرية سوداء (ℓ عدد طبيعي أكبر أو يساوي 2)

I) نسحب على التوالي كرتين بدون ارجاع الكرية المسحوبة في كل مرة الى الكيس بحيث نربح دينار ا من أجل كل كرية بيضاء مسحوبة و نخسر دينارين من أجل كل كرية سوداء مسحوبة .

ليكن X المتغير العشوائي الذي يرفق بكل عملية سحب قيمة الربح الجبري .

- 1) ما هي قيم المتغير العشوائي الممكنة.
 - كتب بدلالة n قانون احتماله.
 - أحسب بدلالة n أمله الرياضياتي.
- 4) هل توجد قيمة للعدد n تجعل الأمل الرياضياتي معدوما؟ أحسبها.
- A_n نفرض أننا سحبنا كرتين في آن واحد ، ليكن A_n حادث الحصول على كرتين من نفس اللون .

. حادث الحصول على كرتين من لونين مختلفين B_n

- ا احسب $p(A_n)$ بدلالة $p(A_n)$ نفسر هذه النتيجة. $p(A_n)$ احسب (أ
- ب) احسب $p(B_n)$ بدلالة n ثم $p(B_n)$ ، فسر هذه النتيجة.

التمرين الثاني: (4 نقاط)

 $\alpha \ge 6$ عدد طبیعي حیث α

- $\alpha+2$ الأساس α ويكتب $\overline{2020}$ في نظام التعداد ذي الأساس α ويكتب ويكتب $\overline{4452}$ في نظام التعداد ذي الأساس α عدد طبيعي يكتب α يحقق α التعداد ذي الأساس α ثم استنتج قيمة العدد α أي بين أن α يحقق α يحقق α أي بين أن
 - ب) أكتب العدد 2y في نظام التعداد ذي الأساس
 - $d = p \gcd(a;b)$ و عددان طبیعیان حیث a > b نضع (2
 - $d = p \gcd(a-b;b)$ بین أن (أ
 - ppcm(437;323) و $p \gcd(437;323)$ ب)
 - حيث $\begin{cases} xy = 24 \\ m^2 + d^2 = 148 \end{cases}$ عين كل الثنائيات (x;y) من الأعداد الطبيعية الغير معدومة والتي تحقق m = ppcm(x;y) , $d = p \gcd(x;y)$

التمرين الثالث: (5 نقاط)

 $u_{n+1} = \sqrt{2u_n + 3}$: n عدد طبيعي عدد $u_0 = \frac{1}{2}$ المتتالية العددية (u_n) معرفة بحدها الأول

- $\frac{1}{2} \le u_n < 3 : n$ برهن بالتراجع أنه من أجل كل عدد طبيعي (1
- اثبت أن المتتالية (u_n) متزايدة تماما ثم استتج أنها متقاربة محددا نهايتها (2
 - $|u_{n+1} 3| \le \frac{2}{5} |u_n 3| : n$ يين أنه من أجل كل عدد طبيعي (أ (3)

اقلب الصفحة

$$3-u_{n} \le \left(\frac{2}{5}\right)^{n} \left(3-u_{0}\right) : n$$
 استنتج أنه من أجل كل عدد طبيعي (4

- (u_n) استنتج من جدید نهایة المتتالیه (5
- $v_n = n(3-u_n)$: بالمنتالية المعرفة من أجل كل عدد طبيعي غير معدوم (v_n) المنتالية المعرفة من أجل كل
 - $\frac{v_{n+1}}{v_n} \le \frac{4}{5}$: n بين أنه من أجل كل عدد طبيعي غير معدوم
 - $v_n \le \left(\frac{4}{5}\right)^{n-1}$: n معدوم غير معدوم عدد طبيعي غير مغدوم) استنتج أنه من أجل كل عدد طبيعي

التمرين الرابع: (7 نقاط)

- $f(x) = x e + \ln(1 + 2e^{-2(x-e)})$:ب \mathbb{R} بالمعرفة على X المتغير الحقيقي المعرفة على $f(x) = x e + \ln(1 + 2e^{-2(x-e)})$
 - $\left(O, \overset{
 ightarrow}{i}, \overset{
 ightarrow}{j}$ تمثیلها البیاني في مستوي منسوب إلى معلم متعامد متجانس $\left(C_f
 ight)$ و
 - $f(x) = -x + e + \ln(2 + e^{2(x-e)})$: x عدد حقیقی عدد کل عدد (1
 - $\lim_{x\to-\infty} f(x) \cdot \lim_{x\to+\infty} f(x)$
 - (3) أدرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها.
- $y=-x+\ln 2+e$ عند y=x-e : معادلتا هما y=x-e عند $y=-x+\ln 2+e$ عند y=x-e عند $y=-x+\ln 2+e$ عند y=x-e عند y=
 - (C_f) بين أن المستقيم (Δ) ذو المعادلة $x = \frac{1}{2} \ln 2 + e$ هو محور تناظر المنحنى (5
 - $\left(C_{\scriptscriptstyle f}
 ight)$ و $\left(D'
 ight)$ ، $\left(D
 ight)$ ، $\left(\Delta
 ight)$ و $\left(6$
 - . وسيط حقيقي m وسيط y=m x-m $\left(e+\frac{\ln 2}{2}\right)+\frac{\ln 2}{2}$: معادلته $\left(D_{m}\right)$
 - . $A\left(\frac{\ln 2}{2} + e \; ; \frac{\ln 2}{2}\right)$ بين أن جميع المستقيمات $\left(D_{\scriptscriptstyle m}\right)$ تشمل النقطة الثابتة (أ
 - \cdot (C_f) و المنحنى و (D_m) باقش حسب قيم الوسيط الحقيقي m عدد نقط تقاطع المستقيم و المنحنى
 - نضع: $I_n = \int\limits_0^1 \ln \left(1+X^n\right) dX$ ، $J = \int\limits_{\ln \sqrt{2}+e}^{\ln \sqrt{3}+e} \left[f\left(x\right)-\left(x-e\right)\right] dx$ نضع:
 - . I_1 but with last J but last J
 - $0 \le I_n \le \ln 2$ بين أن (ب
 - ج) عين اتجاه تغير المتتالية (I_n) ثم استنتج أنها متقاربة.
- $\left(-\ln\left(1+X
 ight) \le X:$ استنتج أنه من أجل كل $1 = \ln\left(1+X
 ight) \le J+I_1 \le \int\limits_{\ln\sqrt{2}+e}^{\ln\sqrt{3}+e} 2e^{-2(x-e)}\,dx-1+\ln 4: \quad X \in \left]0;+\infty\right[$ باستعمال (2)

 $J+I_1$ ثم اعط حصرا للعدد

انتهى الموضوع الثاني