الموضوع الحادي عشر

التمرين الأوّل:

 $C\left(-1;0;1\right)$ في الفضاء المنسوب إلى معلم متعامد ومتجانس $\left(O;\vec{i}:\vec{j};\vec{k}\right)$ نعتبر النقط الفضاء المنسوب الى معلم متعامد ومتجانس في الفضاء المنسوب المعلم متعامد ومتجانس في الفضاء المنسوب المعلم ا

والمستوي
$$(P)$$
 الذي تمثيل وسيطي له $x=\lambda+1$ حيث $x=\lambda+1$ حيث $y=\lambda+\mu-2$ والمستوي $z=3\lambda+\mu+3$

(ABC) هي معادلة للمستوي (ABC) هي معادلة للمستوي (ABC) . يحقق أنّ النقط (ABC) هي معادلة للمستوي (ABC)

- 2. أ ـ اكتب معادلة ديكارتية المستوي (P).
 - (P) ب عدقق أنّ C نقطة من (P)
- 3. أ ـ تحقق أنّ المستويين (P) و (ABC) متعامدان، ثمّ عيّن تمثيلا وسيطيا للمستقيم (Δ) مستقيم تقاطعهما. (Δ) ب ـ احسب المسافة بين النقطة (Δ) والمستقيم (Δ) .
 - $\alpha \in \square$ حيث $\{(A;3),(B;\alpha),(C;\alpha^2)\}$ حيث 4.4
 - اً ـ بيّن أنّه من أجل كل عدد حقيقي α فإنّ G موجودة.
 - ب ـ عين قيمة α حتى تنتمى G إلى المستقيم α

التمرين الثاني:

- . $z^2 + z + 1 = 0$ ، المعادلة $z^2 + z + 1 = 0$. المعادلة الأعداد المركبة
- F و D ، C ، B ، A المستوي المركب منسوب إلى المعلم المتعامد والمتجانس ($O; \vec{u}, \vec{v}$) لتكن النقط: D ، C ، D

$$z_F = \overline{z_D}$$
 و $z_D = -2 + 2\sqrt{3}i$ ، $z_C = -2 + 2\overline{z_B} = \overline{z_A}$ ، $z_A = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ و التي لواحقها على الترتيب:

- . F و D ، C ، B ، A الأسي، ثمّ علم النقط Z_B و Z_A و الشكل الأسي، ثمّ علم النقط
 - ب ـ ما طبيعة المثلث ABC .
- $z'+2=e^{-i\frac{\pi}{3}}(z+2)$ الدوران z' الذي يرفق بكل نقطة M لاحقتها z النقطة M لاحقتها z' حين مركز وزاوية الدوران z'.
 - $z_{E}=1+\sqrt{3}i$ هي E النقطة E بيّن أنّ لاحقة النقطة E صورة النقطة D بالدوران E
 - جـ ـ اكتب العدد $\frac{Z_F-Z_E}{Z_D-Z_E}$ على الشكل الجبري، ثمّ استنتج أنّ المستقيمين (ED) و على متعامدان.
 - . $z' = \sqrt{\frac{z-z_C}{z-z_E}}$:حيث z' حيث عن z نرفق العدد المركب z' حيث (4
 - لتكن (Γ_1) مجموعة النقط M ذات اللاحقة z بحيث يكون z عددا تخيليا صرف عن المجموعة (Γ_1) .
 - $.\{(A;|z_A|),(B;|z_B|),(C;|z_C|)\}$ مرجح الجملة (5
 - . G النقطة Z_G أ عيّن المحقة النقطة
 - $\|\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB} 2\overrightarrow{MC}\|$ من المستوي حيث: $\|\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB} 2\overrightarrow{MC}\|$
 - . (Γ_2) تنتمي إلى (Γ_2) ، ثمّ عيّن طبيعة C تحقق أنّ C

التمرين الثالث:

$$\begin{cases} f\left(x\right) = \frac{\ln x}{1 - \ln x}; & x \in \left]0; e\left[\bigcup e; +\infty\right[\\ f\left(0\right) = -1 \end{cases} \end{cases}$$
 its large in the proof of the proof

 $\left(O, \vec{i}, \vec{j}
ight)$ نسمي المنحني الممثل للدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس

- . يين أنَ f(x) = -1 عند f(x) = -1 عند f(x) = -1 عند f(x) = -1 عند f(x) = -1 أ) بين أنَ
 - ب) أحسب $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ ثم فسر النتيجة هندسيا .
 - بین أنَ f(x) = -1 تم فسر النتیجة هندسیا (2
 - . $f'(x) = \frac{1}{x(1-\ln x)^2}$: $x \in]0; e[\bigcup]e; +\infty[$ مین أنه من أجل کل عدد حقیقی x حیث ، $x \in]0; e[\bigcup]e$
 - ب) استنتج اتجاه تغير الدالة f واشكل جدول تغيراتها .
 - .1 الماحدة الماس (T) المنحني الفطة ذات الفاصلة (4
- ين أنه من أجل (\mathcal{C}_f) يقبل نقطة $f''(x) = \frac{1 + \ln x}{x^2 (1 \ln x)^3}$, $x \in]0; e[\bigcup]e; +\infty[$ يقبل نقطة انعطاف يطلب تعيينها .
 - $.ig(\mathcal{C}_fig)$ و ig(Tig) أرسم fig(4ig) و (6
 - $g(x) = f(|x|) \{-e;e\}$ نعتبر الدالة العددية g المعرفة على المعرفة على (7) الدالة g زوجية .
 - (\mathcal{C}_g) بن اشرح کیفیهٔ الحصول علی (\mathcal{C}_g) انطلاقا من (\mathcal{C}_f) ثم ترسم (ب

التمرين الرابع:

f الدّالة المعرّفة على المجال f f بنسمي f ، نسمي f ، نسمي f المنسوي f المنسوب إلى معلم متعامد ومتجانس f f وحدة الطول f ، وحدة الطول f

- ا. أ ـ احسب $\int_{x} \lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ و فسّر النتيجتين بيانيا.
- ب ـ بیّن أنه من أجل كل عدد حقیقي من المجال $]0;+\infty[$: $[0;+\infty[$ عدد حقیقي من المجال عدد حقیقی من المجال f و شكل جدول تغیّر اتها.
 - يقبل أنّ المنحنى (C) يقبل نقطة انعطاف E يطلب تعيين إحداثييها. 2
 - . O الذي يشمل المبدأ (C) للمنحنى (C) الذي يشمل المبدأ
 - .(C) و (D)، (Δ) و (3)
- $m^{x}=x$ عدد حلول المعادلة . m . انقش بيانيا حسب قيم الوسيط الحقيقي الموجب تماما . m

حل الموضوع الحادي عشر

التمرين الأوّل:

 $C\left(-1;0;1\right)$ ، $B\left(-1;0;2\right)$ ، $A\left(1;1;0\right)$ نعتبر النقط $\left(O;\vec{i}:\vec{j};\vec{k}\right)$ معام متعامد ومتجانس في الفضاء المنسوب إلى معام متعامد ومتجانس

والمستوي (P) الذي تمثيل وسيطي له $x=\lambda+1$ حيث $x=\lambda+\mu-2$ والمستوي (P) الذي تمثيل وسيطي له $z=3\lambda+\mu+3$

التحقق أنّ النقط A، B و C ليست في استقامية، A

من الواضح أنّ الشعاعين \overrightarrow{AB} و \overrightarrow{AC} غير مرتبطين خطيا ومنه النقط \overrightarrow{AB} (-2;-1;1) ، \overrightarrow{AB} (-2;-1;2) ه و \overrightarrow{AB} ليست في استقامية ا

(ABC) تبيين أنّ x-2y+1=0 تبيين أنّ

Pر أ ـ كتابة معادلة ديكارتية للمستوي P

$$\begin{cases} y = x + \mu - 3.....(4) \\ z = 3x + \mu.....(5) \end{cases}$$
 (2) (2) (2) (2) (3) (2) (3) (3) (3) (4) (5) (5) (5) (7) (7) (7) (8) (9) (9) (1) (1) (1) (2) (2) (3) (3) (3) (4) (5) (5) (7) (7) (7) (8) (9) (9) (9) (1) (1) (1) (2) (3) (2) (3) (3) (3) (4) (4) (5) (5) (5) (7) (7) (7) (7) (8) (9) (9) (9) (9) (9) (1) (1) (1) (1) (2) (2) (3) (3) (4) (4) (4) (5) (5) (5) (7)

بضرب (5) بالعدد 1 وبجمع المعادلتين نجد 2x + y - z + 3 = 0 ومنه 2x + y - z + 3 = 0 هي معادلة ديكارتية للمستوي (P).

 $oldsymbol{\cdot}(P)$ ب التحقق أنّ $oldsymbol{C}$ نقطة من

 $C \in (P)$ ومنه $2x_C + y_C - z_C + 3 = 2(-1) + 0 - 1 + 3 = 0$ لدينا

3. أ ـ التحقق أنّ المستويين (P) و (ABC) متعامدان.

لدينا (1;-2;0) شعاعا ناظميا للمستوي (ABC) و (ABC) و (1;-2;0) شعاعا ناظميا للمستوي

و $(P) = (n, \overline{n}) = (n, \overline{n$

تعيين تمثيلا وسيطيا للمستقيم (Δ) مستقيم تقاطعهما.

لتكن M(x;y;z) نقطة من الفضاء.

$$x-2y+1=0$$
......(1) إذا كانت $M\in (\Delta)$ فإن إحداثياتها تحقق الجملة $M\in (\Delta)$

من (1) نجد x = 2y - 1 من (2) نجد (2y - 1 من (2) منه y + 1 - z = 0 من (1) من (1) من (2y - 1 من (1) من (1) من (1y - z = 0 من (1z = 0 من (1) من (1z = 0 من (1z = 0 من (1) م

. وبوضع
$$y=t$$
 نجد $z=5y+1$ عدد حقیقی $z=5y+1$ عدد حقیقی $z=5y+1$

ب - احسب المسافة بين النقطة A والمستقيم (Δ).

 $d\left(A;\left(\Delta
ight)
ight)=d\left(A;\left(P
ight)
ight)$ فإن $A\in\left(ABC
ight)$ متعامدان و $A\in\left(ABC
ight)$ متعامدان و

$$d(A;(\Delta)) = \frac{5}{\sqrt{6}}$$
 دينا $d(A;(P)) = \frac{|2(1)+1-1+3|}{\sqrt{4+1+1}} = \frac{5}{\sqrt{6}}$ دينا

. $\alpha \in \Box$ حيث $\{(A;3),(B;\alpha),(C;\alpha^2)\}$ حيث G مرجح الجملة:

أ ـ تبيين أنّه من أجل كل عدد حقيقى α فإنّ α موجودة .

 $3+\alpha+\alpha^2\neq 0$ موجودة معناه G

 $3+\alpha+\alpha^2\neq 0$ ، α ومنه المعادلة $\alpha+\alpha^2=0$ لا تقبل حلو لا أي من أجل كل عدد حقيقي $\Delta=1-12=-11$ وعليه أجل كل عدد حقيقي α فإنّ α موجودة.

 (Δ) ب ـ تعيين قيمة α حتى تنتمي G إلى المستقيم

$$(P)$$
 دينا (Δ) يكفي أن تنتمي G حتى تنتمي G إلى المستقيم (Δ) يكفي أن تنتمي إلى G دينا G حتى تنتمي G عند G حتى تنتمي إلى G حتى تنتمي إلى المستقيم G

(ABC) لأن G هي مرجح النقط A B و G فهي حتما تنتمي للمستوي

$$\frac{9-4\alpha-3\alpha^2}{3+\alpha+\alpha^2}+3=0$$
 معناه $2\left(\frac{3-\alpha-\alpha^2}{3+\alpha+\alpha^2}\right)+\frac{3}{3+\alpha+\alpha^2}+3=0$ معناه $G\in (P)$

.
$$\alpha = 18$$
 وتكافئ $\frac{18 - \alpha}{3 + \alpha + \alpha^2} = 0$ وتكافئ $\frac{9 - 4\alpha - 3\alpha^2 + 9 + 3\alpha + 3\alpha^2}{3 + \alpha + \alpha^2} = 0$ وتكافئ $\frac{3 + \alpha + \alpha^2}{3 + \alpha + \alpha^2} = 0$

طريقة ثانية:

 (Δ) و تنتمي لـ(P) و تنتمي لـ(R) و (ABC) لائنها تنتمي لـ(P) و تنتمي لـ(P)

ولدينا G مرجح الجملة: $\{(A;3),(B;\alpha),(C;\alpha^2)\}$ ولدينا $\{(A;3),(B;\alpha),(C;\alpha^2)\}$

یکون: C یکون ($3+\alpha+\alpha^2$) یمن أجل M منطبقة علی M یکون:

 $(3 + \alpha + \alpha^2)\overrightarrow{CG} = 3\overrightarrow{CA} + \alpha \overrightarrow{CB}$

معناه الشعاعان \overrightarrow{u} و \overrightarrow{u} مرتبطان خطيا أي الشعاعان خطيا مرتبطان خطيا مرتبطان خطيا.

$$\alpha=18$$
 دينا $\alpha=18$ ومنه $\alpha=15$ ومنه $\alpha=15$ ومنه $\alpha=18$ ومنه $\alpha=15$ ومنه $\alpha=18$ ومنه $\alpha=18$

التمرين الثاني:

 $z^2 + z + 1 = 0$: المعادلة: $z^2 + z + 1 = 0$ على مجموعة الأعداد المركبة $z^2 + z + 1 = 0$

.
$$z_2 = \frac{1-\sqrt{3}i}{2}$$
 و $z_1 = \frac{-1+\sqrt{3}i}{2}$ هما $\Delta = 1-4=-3=3i^2=\left(\sqrt{3}i\right)^2$

F و D ، C ، B ، A : لتكن النقط: $O; \vec{u}, \vec{v}$ و D ، C ، D

.
$$z_F = \overline{z_D}$$
 و $z_D = -2 + 2\sqrt{3}i$ ، $z_C = -2$ ، $z_B = \overline{z_A}$ ، $z_A = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ التي لواحقها على الترتيب:

. F و D ، C ، B ، A النقط على الأسي، و علم النقط $z_{\scriptscriptstyle B}$ و $z_{\scriptscriptstyle A}$

$$\operatorname{arg}(z_A) = \frac{2\pi}{3}$$
 ومنه $\operatorname{sin} \theta = \frac{1}{2}$ ومنه $\operatorname{arg}(z_A) = \theta$ ، $|z_A| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = 1$

 $z_{B} = \overline{z_{A}} = e^{-i\frac{2\pi}{3}}$, $z_{A} = e^{i\frac{2\pi}{3}}$

ب ـ طبيعة المثلث ABC ـ م

$$AB = |z_B - z_A| = \left| -\frac{1}{2} - \frac{\sqrt{3}}{2}i + \frac{1}{2} - \frac{\sqrt{3}}{2}i \right| = \left| -\sqrt{3}i \right| = \sqrt{3}$$

$$AC = |z_C - z_A| = \left| -2 + \frac{1}{2} - \frac{\sqrt{3}}{2}i \right| = \frac{3}{2} - \frac{\sqrt{3}}{2}i = \sqrt{3}$$

$$BC = |z_C - z_B| = \left| -2 + \frac{1}{2} + \frac{\sqrt{3}}{2}i \right| = \left| \frac{3}{2} + \frac{\sqrt{3}}{2}i \right| = \sqrt{3}$$

ومنه AB = AC = BC بالتالي المثلث ABC = AC = BC ومنه

 $z'+2=e^{-i\frac{\pi}{3}}(z+2)$ اليكن الدوران z الذي يرفق بكل نقطة M لاحقتها z النقطة M لاحقتها z النقطة والمرات الدوران الدوران الذي يرفق بكل نقطة z

أ ـ تعيين مركز وزاوية الدوران R أ

 $z'-z_0=e^{i\theta}(z-z_0)$ هي θ هي العبارة المركبة للدوران الذي مركزه M_0 دات اللاحقة وزاويته

 $z'-z_{c}=e^{-i\frac{\pi}{3}}$ لدينا $z'+2=e^{-i\frac{\pi}{3}}(z+2)$ تكافئ $z'-z_{c}=e^{-i\frac{\pi}{3}}(z-z_{c})$ ومنه مركز الدوران $z'+2=e^{-i\frac{\pi}{3}}(z+2)$

ب ـ لتكن النقطة E صورة النقطة D بالدوران R . $Z_E = 1 + \sqrt{3}i$ هي $Z_E = 1 + \sqrt{3}i$

$$z_{\scriptscriptstyle E} = \left(rac{1}{2} - rac{\sqrt{3}}{2}i
ight) \left(2\sqrt{3}i
ight) - 2$$
 لدينا $z_{\scriptscriptstyle E} = e^{irac{\pi}{3}} \left(2\sqrt{3}i
ight) - 2$ معناه $z_{\scriptscriptstyle E} + 2 = e^{-irac{\pi}{3}} \left(z_{\scriptscriptstyle D} + 2
ight)$ لدينا

 $z_E = 1 + \sqrt{3}i$ وعليه

جـ ـ كتابة العدد $\frac{Z_F - Z_E}{Z_D - Z_E}$ على الشكل الجبري.

$$\frac{z_F - z_E}{z_D - z_E} = \frac{-2 - 2\sqrt{3}i - 1 - \sqrt{3}i}{-2 + 2\sqrt{3}i - 1 - \sqrt{3}} = \frac{-3 - 3\sqrt{3}i}{-3 + \sqrt{3}i} = \sqrt{3}i$$

استنتاج أنّ المستقيمين (ED) و (EF) متعامدان.

$$\overrightarrow{ED} \perp \overrightarrow{EF}$$
 ومنه $\overrightarrow{ED} + \overrightarrow{EF}$ ومنه $\frac{\pi}{2}$ وهذا يعني أنّ $\arg\left(\frac{z_F - z_E}{z_D - z_E}\right) = \frac{\pi}{2}$ ومنه $\frac{z_F - z_E}{z_D - z_E} = \sqrt{3}i$ الدينا

ومنه المستقيمان (ED) و (EF) متعامدان.

.
$$z' = \frac{z-z_C}{z-z_E}$$
 : حيث: z' حيث: z' نرفق العدد المركب z' حيث: z' عن z' لكل عدد مركب يختلف z'

لتكن (Γ_1) مجموعة النقط M ذات اللاحقة z بحيث يكون z عددا تخيليا صرفا.

 (Γ_1) تعيين المجموعة

$$z \neq z_E$$
 و $\arg(z') = \frac{\pi}{2} + k\pi$ و $z = z_C$ و $z' = 0$ معناه $\sigma(\Gamma_1)$ معناه $\sigma(\Gamma_1)$

.
$$\arg(z') = \arg\left(\frac{z - z_C}{z - z_E}\right) = \left(\overrightarrow{ME}; \overrightarrow{MC}\right)$$
 ولدينا

. $M \neq E$ و $(\overrightarrow{ME}; \overrightarrow{MC}) = \frac{\pi}{2} + k\pi$ أو M = C معناه (Γ_1) معناه $M \neq E$

 $.\{(A;|z_A|),(B;|z_B|),(C;|z_C|)\}$ مرجج الجملة (5

.G أ ـ تعيين z_G لاحقة النقطة

 $\{(A;1),(B;1),(C;2)\}$ لدينا $|z_C|=2$ ومنه $|z_C|=2$ ومنه $|z_B|=1$ ، $|z_A|=1$ لدينا

$$z_G = \frac{z_A + z_B + 2z_C}{3} = \frac{1 + \sqrt{3}}{2} i - \frac{1}{2} - \frac{\sqrt{3}}{2} i - 4 = \frac{-5}{3}$$

. $||\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}|| = ||\overrightarrow{MA} + \overrightarrow{MB} - 2\overrightarrow{MC}||$ عن مجموعة النقط M من المستوي حيث: (Γ_2) هي مجموعة النقط

 (Γ_2) التحقق أنّ التحقق أن C تنتمي إلى

|CA| = (Γ_2) تعیین طبیعة

> $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = 4\overrightarrow{MG}$ من أجل كل نقطة M من المستوي لدينا $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MC} \neq \overrightarrow{MC} + \overrightarrow{CA} + \overrightarrow{MC} + \overrightarrow{CB} - 2\overrightarrow{MC} = \overrightarrow{CA} + \overrightarrow{CB}$

$$MG = \frac{\left\|\overrightarrow{CA} + \overrightarrow{CB}\right\|}{4}$$
 انعني $\left\|\overrightarrow{AMG}\right\| = \left\|\overrightarrow{CA} + \overrightarrow{CB}\right\|$ نعني $\left\|\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}\right\| = \left\|\overrightarrow{MA} + \overrightarrow{MB} - 2\overrightarrow{MC}\right\|$

$$MG = \frac{3}{4}$$
 ومنه $\|\overrightarrow{CA} + \overrightarrow{CB}\| = |z_A - z_C + z_B - z_C| = |3| = 3$

بالتالي (Γ_2) هي الدائرة التي مركزها G ونصف قطرها (Γ_2)

التمرين الثالث:

$$f(x)=\frac{\ln |x|}{1-\ln x}; \ x\in]0; e[\cup]e;+\infty[$$
 ين الثالث $f(x)=\frac{\ln |x|}{1-\ln x}$ ين الدالة العددية المعرفة بما يلي $f(0)=-1$

 (O, \vec{i}, \vec{j}) نسمي المنحني الممثل للدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس

. أ) تبيين أنَ f(x) = -1 ثم أدرس استمرارية الدالة f(x) = -1 أ) تبيين أنَ أن

 $t \to -\infty$ نضع $x \xrightarrow{x>0} 0$ نضع $t = \ln x$ نضع

$$\lim_{x \to 0} = \lim_{x \to 0} \frac{\ln x}{1 - \ln x} = \lim_{t \to \infty} \frac{t}{1 - t} = -1$$

.0 يمين على يمين f فإن الدالة f مستمرة على يمين الدالة f مستمرة على يمين

$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x}$$
 ب) حساب

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{\ln x}{1 - \ln x} + 1}{x} = \lim_{x \to 0} \frac{\frac{1}{1 - \ln x}}{x} = \lim_{x \to 0} \frac{1}{x - x \ln x} = +\infty$$

$$\lim_{x \to 0} (x - x \ln x) = 0^+ \quad \forall$$

التفسير: الدالة f لا تقبل الإشتقاق عند 0 ومنحناها البياني يقبل حامل محور التراتيب مماسا له عند النقطة التي إحداثياها (1–:0)

. انبیین أنَ انسر النتیجة هندسیا و تفسیر النتیجة هندسیا (2 انتیج النتیج النتی

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{1 - \ln x} = \lim_{x \to +\infty} \frac{t}{1 - t} = -1$$

y=-1 بجوار y=-1 بجوار y=-1 بجوار y=-1

 $f'(x) = \frac{1}{x(1-\ln x)^2}$: $x \in]0; e[\cup]e; +\infty[$ ، حيث $x \in [0; e]$ اتبيين أنه من أجل كل عدد حقيقي $x \in [0; e]$

$$f'(x) = \frac{\frac{1}{x}(1 - \ln x) + \frac{1}{x}\ln x}{(1 - \ln x)^2} = \frac{\frac{1}{x}(1 - \ln x + \ln x)}{(1 - \ln x)^2} = \frac{1}{x(1 - \ln x)^2}$$

ب) استنتاج اتجاه تغير الدالة

 $]e;+\infty[$ و]0;e[على]0;e[و يكون [0;e] و بالتالي الدالة [0;e] من أجل كل [0;e] من أجل كل

f الدالة f

X	0	+∞
f'(x)	+	+
f(x)	-1 +∞	

- .1 كتابة معادلة المماس (T) للمنحني (\mathcal{C}_f) عند النقطة ذات الفاصلة (4
 - y = x 1 ومنه y = 1(x 1) ومنه y = f'(1)(x 1) + f(1)
- تبيين أنه من أجل (\mathcal{C}_f) يقبل نقطة $f''(x) = \frac{1 + \ln x}{x^2 \left(1 \ln x\right)^3}$ ، $x \in]0; e[\bigcup]e; +\infty[$ يقبل نقطة (5) تبيين أنه من أجل المنحني والمنافقة المنافقة الم

انعطاف بطلب تعيينها.

$$\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$$
 تذکیر:

$$x \in]0; e[\cup]e; +\infty[$$
 من أجل $x \in]0; e[\cup]e; +\infty[$ من أجل $x \in]0; e[\cup]e; +\infty[$

$$f''(x) = \frac{-(1-\ln x)(1-\ln x-2)}{x^2(1-\ln x)^4} = \frac{1+\ln x}{x^2(1-\ln x)^3}$$

 $x \in]0; e[\bigcup]e; +\infty[$ هي نفس إشارة $x^2(1-\ln x)^3 > 0$ لأن $x \in]0; e[\bigcup]e$ من أجل كل f''(x)

$$x = \frac{1}{e}$$
 تعني $1 + \ln x = 0$ وتكافئ $f''(x) = 0$

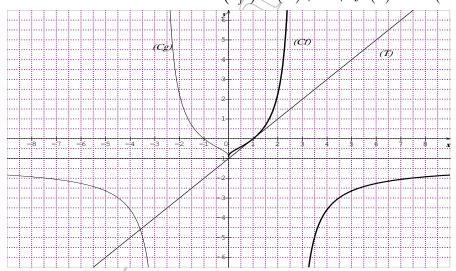
$$x>\frac{1}{e}$$
 ا أي $f''(x)>0$ ا أي $f''(x)>0$

х	0	+∞
f " (x)	- 00 +	

هي نقطة إنعطاف $\left(\frac{1}{e}; -\frac{1}{2}\right)$ تنعدم عند العدد $\left(\frac{1}{e}; -\frac{1}{2}\right)$ هي نقطة إنعطاف f''(x)

 $.(\mathcal{C}_{f})$ للمنحنى

 (\mathcal{C}_f) و (T) شم ارسم (f(4) عساب (6)



. $g(x) = f(|x|): -\{-e;e\}$ نعتبر الدالة العددية g المعرفة على g

أ) تبيين أنَ الدالة g زوجية .

لدينا ، D متناظر بالنسبة لـ 0

$$g(-x)=f(|-x|)=f(|x|)=g(x)$$

 (\mathcal{C}_g) ثم ارسم (\mathcal{C}_f) نطلاقا من (\mathcal{C}_g) ثم ارسم (ت

$$\begin{cases} g(x) = f(x); x \in [0; e[\cup]e; +\infty[\\ g(x) = f(-x); x \in]-\infty; -e[\cup]-e; 0] \end{cases}$$

لما g وبما أن الدالة g وبما أن الدالة g يكون $x\in[0;e[\,\cup\,]e;+\infty[$ لما متناظر بالنسبة لمحور التراتيب

التمرين الرابع:

الدّالة المعرّفة على المجال $]0;+\infty$ بنسمي $f(x)=\frac{\ln x}{x}$ الدّالة المعرّفة على المجال $f(x)=\frac{\ln x}{x}$ الدّالة المعرّفة على المجال الدّالة المعرّفة على المحال الدّالة الدّالة المحال الدّالة ا

2cm المنسوب إلى معلم متعامد ومتجانس $(O; \vec{i}, \vec{j})$. وحدة الطول

 $\lim_{x \to \infty} f(x) = \lim_{x \to +\infty} f(x)$ 1. 1

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to 0} x = 0^{+} \quad \lim_{x \to 0} \ln x = -\infty \quad \text{if} \quad \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln x}{x} = -\infty$$

تفسير النتيجتين بيانيا.

بما أنّ y=0 (محور الفواصل) بقبل مستقيم مقارب معادلته y=0 فإنّ (C) يقبل مستقيم مقارب معادلته

و محور التراتيب) x=0 معادلته x=0 معادلته و معادلته x=0 يقبل مستقيم مقارب معادلته x=0

 $f'(x) = \frac{1 - \ln x}{x^2}$: $]0; +\infty[$ من المجال x من الجل كل عدد حقيقي x من المجال

$$f'(x) = \frac{\frac{1}{x}x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

f الدالة اتجاه تغيّر الدالة

 $1-\ln x$ إشارة f'(x) هي من نفس إشارة

x=e ویکافئ $1-\ln x=0$ معناه f'(x)=0

$$0 < x < e$$
 ویکافی $1 - \ln x > 0$ معناه $f'(x) > 0$

$$\ln x > 1$$
 ویکافئ $\ln x > 1$ ویکافئ $\ln x > 1$ معناه $\ln x < 0$

. $[e;+\infty[$ متزایدة تماما علی]0;e] ومتناقصة تماما علی متزاید تماما علی ا

f الدالة عيرات الدالة f

_		
	X	0 e +∞
	f'(x)	+ 0 -
	f(x)	$\frac{1}{e}$

يطلب تعيين أنّ المنحنى (C) يقبل نقطة انعطاف E يطلب تعيين إحداثييها. 2

$$f''(x) = \frac{\frac{-1}{x}x^2 - 2x(1 - \ln x)}{x^4} = \frac{-x - 2x(1 - \ln x)}{x^4} = \frac{-1 - 2 + 2\ln x}{x^3} = \frac{-3 + 2\ln x}{x^3}$$

. $-3+2\ln x$ من أجل كل عدد حقيقي x من المجال $[0;+\infty[$ ، $]0;+\infty[$ من أجل كل عدد حقيقي من المجال من أعبارة $[0;+\infty[$

$$x = \sqrt{e^3}$$
 أي $\ln x = \frac{3}{2}$ وتكافئ $-3 + 2 \ln x = 0$ أي $f''(x) = 0$

$$x>\sqrt{e^3}$$
 أي $\ln x>\frac{3}{2}$ و تكافئ $-3+2\ln x>0$ معناه f " $(x)>0$

х	()	$\sqrt{e^3}$		+∞
f " (x)		_	0	+	

في نقطة انعطاف $E\left(\sqrt{e^3};f\left(\sqrt{e^3}\right)\right)$ ومنه النقطة $\sqrt{e^3}$ ومنه النقطة وتغير من إشارتها بجوار أسارتها بجوار $\sqrt{e^3}$

. O الذي يشمل المبدأ (C) للمنحنى (C) الذي يشمل المبدأ .

 $y = f'(x_0)(x - x_0) + f(x_0)$ معادلة المماس من الشكل

$$-x_0 \left(\frac{1 - \ln x_0}{x_0^2} \right) + \frac{\ln x_0}{x_0} = 0 \quad \text{eides} \quad 0 = f'(x_0)(0 - x_0) + f(x_0) \quad 0 = (D)$$

$$x_0 = \sqrt{e}$$
 وتكافئ $\ln x_0 = \frac{1}{2}$ وتكافئ $\frac{-1 + 2 \ln x_0}{x_0} = 0$ أي

 $y = \frac{1}{2e}x$ إذن معادلة المماس هي $y = f'(\sqrt{e})x$

3. رسم (D) و (C).

4. المناقشة بيانيا حسب قيم الوسيط الحقيقي الموجب

 $m^x = x$ عدد حلول المعادلة ، m

 $x \ln m = \ln x$ وتكافئ $m^x = \ln x$ وتكافئ $m^x = x$

$$f(x) = \ln m$$
 أي $\ln m = \frac{\ln x}{x}$

إذا كان $0 < m \le 1$ فإنّ $0 \le m \le 1$ وبالتالي المعادلة تقبل

إذا كان
$$1 < m < e^{rac{1}{e}}$$
 فإنّ $1 < m < e^{rac{1}{e}}$ وبالتالي

المعادلة تقبل حلين متمايزين

إذا كان
$$m=e^{rac{1}{e}}$$
 فإنّ فإنّ أ $m=e^{rac{1}{e}}$ وبالتالي المعادلة تقبل

حلا مضاعفا

إذا كان
$$e^{\frac{1}{e}} > m$$
 فإنّ $e^{\frac{1}{e}}$ او بالتالي المعادلة ليس لها حلول.

