إعداد: مصطفاي عبد العزيز

الحل المفصل للإختبار رقم 13

<u>الموضوع الأوّل</u>

التمرين الأ<u>وّل:</u> /

حلا لها أن (3,1) علما أن (3,1) حلا لها (x',y') علما أن (3,1) حلا لها المجموعة $\mathbb{Z} \times \mathbb{Z}$ المعادلة ذات المجهول الم

45x-28y=130 : $(x\,,y\,)$ نعتبر في المجموعة $\mathbb{Z} imes\mathbb{Z}$ المعادلة ذات المجهول -2

بين أنه إذا كان (x,y) حلالهذه المعادلة فإن x مضاعف للعدد y و y مضاعف للعدد y مضاعف هذه المعادلة.

باسه N و $\overline{5etaetaeta}$ في نظام تعداد أساسه N و $\overline{5etaetaeta}$ في نظام تعداد أساسه N .

. عيّن lpha و eta ، ثم اكتب N في النظام العشري .

التمرين الثاني:

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O;\vec{i},\vec{j},\vec{k})$ نعتبر النقط:

.H(-4;4;4) $\circ D(-2;5;6)$ $\circ C(2;0;0)$ $\circ B(0;4;0)$ $\circ A(0;0;2)$

ا. أ ـ بيّن أنّ النقط A، B و C تعيّن مستويال A

ب ـ اكتب معادلة ديكارتية للمستوي (ABC)

(ABC) يبيّن أن النقطة H هي المسقط العمودي للنقطة D على المستوي (ABC).

 $\{(A;-2),(B;-1),(C;2)\}$ النقطة $\{(A;-2),(B;-1),(C;2)\}$ المثقلة المثقلة $\{(A;-2),(B;-1),(C;2)\}$.3

 $(-2\overrightarrow{MA}-\overrightarrow{MB}+2\overrightarrow{MC}).\overrightarrow{CH}=48$ من الفضاء حيث M من الفضاء حيث (E) مجموعة النقط M

(E) ب ـ تحقق من أنّ النقطة A تنتمي إلى

 $\overrightarrow{AM}.\overrightarrow{CH}=0$ تكافئ (2) تكافئ أنّ العلاقة

(E) د ـ استنتج طبيعة المجموعة

التمرين الثالث:

 $P(z) = z^3 - 4z^2 + 8z - 8$ حيث: $P(z) = z^3 - 4z^2 + 8z - 8$ حيث: $P(z) = z^3 - 4z^2 + 8z - 8$

P(z) الحدود P(z) هو جذر لكثير الحدود

P(z)=0 المعادلة \mathbb{C} المعادلة الأعداد المركبة الأعداد المركبة المعادلة P(z)=0

 $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس $(2; \vec{u}, \vec{v})$

نعتبر النقط A، B و C ذات اللاحقات: $z_A=1-i\sqrt{3}$ و $z_B=1+i\sqrt{3}$ ، $z_A=2$ نعتبر النقط $z_B=1-i\sqrt{3}$

أ ـ اكتب كلا من z_C ، z_B و z_C على الشكل الأسّي. z_C

ب ـ عيّن مجموعة قيم العدد الطبيعي بحيث يكون $\left(\frac{z_B}{z_C}\right)^n$ حقيقيا.

 $z_B^{3n} + z_C^{3n} + 2^{3n+1} = 0$: ابیّن أنّه، من أجل كل عدد طبیعي فردي غردي

إعداد: مصطفاي عبد العزيز

الحل المفصل للإختبار رقم 13

OBAC د ـ أنشئ النقط A، B و C ثمّ عيّن طبيعة الرباعي

$$z' = \frac{\overline{z_A \cdot z} - z_C}{z - z_C}$$
 :در نوفق بكل نقطة z' النقطة z' النقطة M' النقطة z' النقطة z' النقطة z'

. (E) مجموعة
$$M$$
 النقط ذات اللاحقة z بحيث $|z-z_c|=1$ عيّن ثم أنشئ المجموعة M مجموعة (E).

$$z'=z_A'+\frac{z_C}{z-z_C}$$
 ب - تحقق أنّ

جـ ـ بيّن أنه عندما تمسح النقطة M المجموعة (E) فإن النقطة M تمسح دائرة (C) يطلب تعيين مركزها ونصف قطرها

 $g(x)=x^2-1-2\ln(x)$ بعتبر الدالة العددية g المعرفة على المجال $g(x)=x^2-1-2\ln(x)$ بالمجال $g(x)=x^2-1$

1. ادرس تغيرات الدالة g.

 $9;4\infty$ ر استنتج إشارة $g\left(x
ight)$ على المجال 2

$$f(x)=x+\frac{1-(\ln x)^2}{x}$$
: با نعتبر الدالة العددية f المعرفة على المجال $f(x)=x+\frac{1-(\ln x)^2}{x}$

ر المتعلم البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس
$$(C_f, \vec{i}, \vec{j})$$
. المعلم البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f, \vec{i}, \vec{j}) .

 $^{\prime}$. احسب $f\left(x
ight)$ النتيجة هندسيا. $\int_{0}^{\infty}dx\,dx$

$$\lim_{x\to+\infty} f\left(x\right)$$
 يمكن وضع $\lim_{x\to+\infty} \frac{\left(\ln x\right)^2}{x} = 0$ ير هن أنّ $\lim_{x\to+\infty} \frac{\left(\ln x\right)^2}{x} = 0$ يمكن وضع 2.

$$f'(x) = \frac{g(x) + (\ln x)^2}{x^2}$$
 ، $]0; +\infty[$ من المجال x من المجال عدد حقیقی x من المجال x و شکل جدول تغیّر اتها.

 $+\infty$ عند (C_{f}) مقارب مائل للمنحنى y=x عند (Δ) ذا المعادلة y=x عند (Δ) $igwedge(\Delta)$ ب ـ ادرس الوضغية النسبية للمنحنى $ig(C_fig)$ بالنسبة إلى المستقيم

0.3 < lpha < 0.4 . وحيدا lpha ؛ حيث $f\left(x
ight) = 0$. $f\left(x
ight) = 0$. $f\left(x
ight)$ $(C_{\scriptscriptstyle f})$ ب ـ أرسم (Δ)

6. نعتبر الدّالةُ العدديةُ h المعرّفة على المجال $]-\infty;0$ ب $[-\infty,0]$ بمثيلها البياني.

• اشرح كيفية رسم المنحنى $\binom{C_h}{t}$ إنطلاقا من المنحنى أثمّ ارسمه.

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

الموضوع الثاني:

التمرين الأوّل:

. 7 على n ادر س حسب قيم العدد الطبيعي n بواقي قسمة العدد 2^n على -1

ر. 7 مضاعفا للعدد $3 \times 100^{3n+2} + 8 \times 102^{3n} - 104$ يكون العدد: n يكون العدد n مضاعفا للعدد -2

. PGCD (505,303) عين (505,303 أولي ؟ برّو، عين -3

505x - 303y = 1111....(1) ب ـ نعتبر في \mathbb{Z}^2 المعاملة :

. $x_0 + 3y_0 = -5$: يحقق (x_0, y_0) علما أن الحل الخاص (x_0, y_0) يحقق (1) علما الحل الخاص

y و y موجبان x

.(1) هو حل للمعادلة (x;y) هو (x;y) هو حل للمعادلة (x;y) هو حل المعادلة (x;y)

d ؛ d ؛ القيم الممكنة للعدد

d=11 علون المعادلة (1) جيث يكون (x;y) حلول المعادلة

التمرين الثاني:

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر النقط:

والمستقيم (Δ) والمستقيم والمستقيم والمستقيم والمستقيم والم $H\left(1;1;0
ight)$ والمستقيم والمستق

$$\begin{cases} x = -2 + 6t \\ y = 1 - 2t \quad ; (t \in \mathbb{R}) \\ z = 4t \end{cases}$$

- (AB) اكتب تمثيلا وسيطيا للمستقيم (AB).
- 2. بيّن أنّ (AB) و (Δ) لا ينتميان إلى نفس المستوي.
- (Δ) هو المستوي الذي يشمل (AB) ويوازي (Δ) .
- . (P) ناظمي للمستوي \vec{n} (1;5;1) ناطمي المستوي أ ـ تحقق أنّ
 - ب ـ اكتب معادلة ديكارتية للمستوي (P).
 - (Δ) و (P) و احسب المسافة بين
- 4. عيّن إحداثيات النقطة I منتصفُ القطعة [AB]، ثمّ جد معادلة ديكارتية المستوي (Q)؛ المحوري للقطعة [AB].
 - $.MA^2 MB^2 = 2$. لتكن (Γ) مجموعة النقط M من الفضاء بحيث:
 - ـ تحقق أنّ النقطة H تنتمي إلى Γ) ثمّ استنتج طبيعة المجموعة Γ).

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

التمرين الثالث:

المستوي منسوب إلى معلم متعامد ومتجانس $(O; \vec{i}, \vec{j})$.

K ، J ، I ونسمي C_O التي لواحقها C_O التي لواحقها C_O ، C_B و C_C على الترتيب. ونسمي C_O باك C_O التشابه المباشر الذي يحول C_O الح C_O الح C_O الح منتصفات القطع C_O الح C_O الح C_O التشابه المباشر الذي يحول C_O الح C_O

. ω عيّن العبارة المركبة للتشابه ω ، ثمّ عيّن مركزه ω .

AOBC عين صورة المستطيل AOBC بالتشابه -2

 $S^2 = S \circ S$ نعتبر التحويل $S \circ S = S$

أ ـ عين صورة النقط A' ، B' التحويل S^2

ب ـ برهن أنّ S 2 تحاك يطلب تعيين عناصره.

جـ - استنتج أنّ المستقيمات (OC) (BJ) المرتقيمات جـ - استنتج

التمرين الرابع:

$$g(x) = \frac{2x}{x+1} - \ln(x+1)$$
 نعتبر الدالة g المعرفة على المجال $g(x) = \frac{2x}{x+1} - \ln(x+1)$ نعتبر الدالة و

ا. ادرس تغیّرات الدالهٔ g، ثم شکل جدول تغیراتها. f

g(x) عيّن، حسب قيّم x إشارة 3

 $f(x) = e^{-x} \ln(e^{2x} + 1)$ بالدالة المعرفة على \mathbb{R} بايد الدالة المعرفة المعرفة على f(II)

البياني في معلم متعامد ومتجانس (C_f) . تمثيلها البياني في معلم متعامد ومتجانس

 $-\infty$ عند f عين نهاية الدالة $\lim_{t\to 0} \frac{\ln(t+1)}{t} = 1$ عند .1

$$\lim_{x \to +\infty} f(x)$$
 . $\lim_{x \to +\infty} f(x) = \frac{2x}{e^x} + \frac{\ln(e^{-2x} + 1)}{e^x}$. ثم احسب 2.

 $f'(x) = e^{-x} g(e^{2x})$ بین أنه من أجل كل عدد حقیقي x عدد حقیقي 3.

f'(x) ب عين إشارة

جـ ـ استنتج إتجاه تغيّر الدالة f، ثمّ شكل جدول تغيراتها.

 $f\left(\frac{\ln \alpha}{2}\right) \approx 0.8$ و $g(0,8) \approx 0.6$ و $g(0,6) = \frac{\ln \alpha}{2}$ و $g(0,6) \approx 0.8$ و $g(0,6) = \frac{2\sqrt{\alpha}}{2}$. بين أن $g(0,8) \approx 0.8$

إعداد: مصطفاي عبد العزيز

الحل المفصل للإختبار رقم 13

حل الموضوع الأوّل

التمرين الأوّل: أ

كلا لها أن (3,1) علما أن (3,1) حلا لها (x',y') علما أن (3,1) حلا لها (3,1)

لدينا
$$9(x'-3)-14(y'-1)=0$$
 بالطرح نحصل على $9(x'-3)-14(y'-1)=0$ أي $9(3)-14(1)=13$

و 14 و 9 أوليان فيما بينهما إذن حسب مبر هنة غوص 9(x'-3) و 14 و9 أوليان فيما بينهما إذن حسب مبر هنة غوص

يقسم 3- $x \in \mathbb{Z}$ ومنه x = 3 + 3 + 3 أي x = 14k + 3 حيث $x \in \mathbb{Z}$ بالتعويض في x = 3

 $k \in \mathbb{Z}$ مع y' = 9k + 1 أي y' - 1 = 9k مع y' = 9k + 1 ومنه y' - 1 = 9k ومنه y' = 9k + 1 ومنه y' = 9k + 1 ومنه y' = 9k + 1

45x-28y=130 : (x,y) نعتبر في المجموعة $\mathbb{Z} \times \mathbb{Z}$ المعادلة ذات المجهول -2

تبيين أنه إذا كان (x,y) حلا لهذه المعادلة فإن x مضاعف للعدد 2 و y مضاعف للعدد 5.

والعددان 45x = 28y + 130 ومنه 2 يقسم 45x = 28y + 130 والعددان 45x = 28y + 130

x و 45 أوليان فيما بينهما إذن حسب مبر همة غوص x يقسم x أي x مضاعف للعدد 2.

وكذلك لدينا 28y = 45x - 130 أي (x - 26) = 5(x - 26) ومنه 5 يقسم 28y = 45x - 130 وكذلك لدينا 30y = 45x - 130 أي 30y = 45x - 130 فيما بينهما إذن حسب مبر هنة غوص 5 يقسم 30y = 45x - 130 أي 30y = 45x - 130

حل المعادلة.

 $y' \in \mathbb{Z}$ حيث y = 5y' حيث عناه ' x = 2x حيث x = 2x حيث x = 2x مضاعف للعدد 2 معناه ' x = 2x حيث x = 2x مضاعف للعدد 2 معناه ' x = 2x تكافئ x = 2x تكافئ

 $k \in \mathbb{Z}$ عيث $y \models 9k+1$ و x'=14k+3 وحسب ما سبق $y \models 9k+1$ وحسب ما سبق $y \models 9k+1$

 $k \in \mathbb{Z}$ مع y = 45k + 5 و عليه x = 28k + 6 أي y = 5(9k + 1) وعليه x = 2(14k + 3)

.7 عدد طبیعي يكتب $\overline{2\alpha\alpha3}$ في نظام تعداد أساسه 9 و $\overline{5\beta\beta6}$ في نظام تعداد أساسه N-3

. تعيين α و β ، ثم اكتب N في النظام العشري .

لدينا $N=3+9\alpha+81\alpha+1458$ ومنه $N=3\times 9^0+\alpha\times 9^1+\alpha\times 9^2+2\times 9^3$ لدينا $N=6\times 7^0+\beta\times 7^1+\beta\times 7^2+5\times 7^3$ ومن جهة أخرى $N=6\times 7^0+\beta\times 7^1+\beta\times 7^2+5\times 7^3$ ومن جهة أخرى $N=90\alpha+1461$

أي $0 \le \beta \le 0$ حيث $0 \le \beta \le 6$ وعليه $0 \le \beta \le 0$ ومنه $0 \le \beta \le 0$ ومنه

و $\beta=45k+5$ و $\alpha=28k+6$ وحسب ماسبق 28k+6 وحسب $\beta=45k+5$ و $\alpha=28\beta=130$ و $\beta=45k+5$ مع

 $k \leq \frac{1}{4}$ و لا ينا $k \leq \frac{1}{14}$ و $k \leq \frac{1}{14}$ و $k \leq \frac{1}{14}$ و $k \leq 6$ و الدينا $k \leq 8$ معناه $k \leq 8$ معناه $k \leq 8$

etaوعليه lpha و بالتالي lpha و و k=0

 $.N = 90 \times 6 + 1461 = 2001$ إذن

التمرين الثاني:

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; ec{i}, ec{j}, ec{k})$ نعتبر النقط:

 $.H\left(-4;4;4\right)$ و $D\left(-2;5;6\right)$ ، $C\left(2;0;0\right)$ ، $B\left(0;4;0\right)$ ، $A\left(0;0;2\right)$

1. أ ـ تبيين أنّ النقط A، B و C تعيّن مستويا.

لدينا $\overline{AC}\left(0;4;-2
ight)$ و $\overline{AC}\left(2;0;-2
ight)$ من الواضح أن الشعاعين $\overline{AB}\left(0;4;-2
ight)$ غير مرتبطين خطيا

5

aziz_mus1@hotmail.fr

A/Elaziz

ومنه النقط A، B و Q تعیّن مستویا.

ب ـ كتابة معادلة ديكارتية للمستوي (ABC).

4b-2c=0 ومنه $\overrightarrow{n.AC}=0$ و $\overrightarrow{n.AC}=0$ و عندئذ (ABC) عندئذ (a;b;c) عندئذ

 $\overrightarrow{n}(2;1;2)$ و a=2 و باخذ c=2 و باخذ c=2 و باخذ c=2 و باخذ a=2

A+d=0 يعني $A\in (ABC)$ المستوي 2x+y+2z+d=0 لله معادلة من الشكل A=0 المستوي المستوي المستوي الشكل الشكل الشكل الشكل الشكل الشكل الشكل المستوي المستوي المستوي الشكل الشكل الشكل الشكل الشكل المستوي المس

(ABC) وعليه d=-4 وعليه d=0 عليه d=-4 معادلة ديكارتية للمستوي d=-4

(ABC) على المستوي (ABC). تبيين أن النقطة D على المستوي (ABC).

 $H \in (ABC)$ ومنه $2x_H + y_H + 2z_H - 4 = -8 + 4 + 4 - 4 = 0$ لدينا

ولدينا \overrightarrow{DH} و منه \overrightarrow{DH} و منه \overrightarrow{DH} و منه \overrightarrow{DH} أي الشعاعان \overrightarrow{DH} و \overrightarrow{n} مرتبطان خطيا وبالتالي فإن النقطة \overrightarrow{DH} (-2;-1;-2). \overrightarrow{DH} هي المسقط العمودي للنقطة \overrightarrow{D} على المستوي \overrightarrow{D} المستوي (ABC).

 $\{(A;-2),(B;-1),(C;2)\}$ تبيين أنّ النقطة H هي مرجح للجملة المثقلة .3

 \overrightarrow{HC} (6; 4; 4) و \overrightarrow{HB} (4; 0; -4) ه \overrightarrow{HA} (4; -4; -2) لدينا

أي $-\frac{1}{2}\overline{HC}$ (12,-8) و $-\frac{1}{2}\overline{HC}$ (12,-8) و $-\frac{1}{2}\overline{HC}$ إذن إحداثيات الشعاع

(0;0;0) أي (0;0;0) وهذا يعني أنّ (-8-4+12;8+0-8;4+4-8) وهذا يعني أنّ

 $-\{(A;-2),(B;-1),(C;2)\}$ ومنه H هي مرجح الجملة المثقلة $-2\overrightarrow{HA}-\overrightarrow{HB}+2\overrightarrow{HC}=\overrightarrow{0}$

 $(-2\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC})$. لتكن (E) مجموعة النقط M من الفضاء حيث: 48.

 $\overrightarrow{MH}.\overrightarrow{CH}=48$. أـ تبيين أنّ النقطة M تنتمي إلى (E) إذا وفقط إذا كان (2)

الدينا M هي مرجح للجملة المثقلة $\{(A;-2),(B;-1),(C;2)\}$ إذن من أجل نقطة M من الفضاء:

 $-2\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} = -\overrightarrow{MH}$ \Rightarrow $-2\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} = (-2 - 1 + 2)\overrightarrow{MH}$

 $-\overrightarrow{MH}.\overrightarrow{CH} = -48$ وتكافئ $\left(-2\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC}\right).\overrightarrow{CH} = -48$ اي M تنتمي إلى (E) معناه M

 $.\overrightarrow{MH}.\overrightarrow{CH} = 48$

 \cdot ب - التحقق من أنّ النقطة A تنتمي إلى (E).

 $\overrightarrow{AH}.\overrightarrow{CH} = -4 \times -6 + 4 \times 4 + 2 \times 4 = 48$ لدينا $\overrightarrow{CH}\left(-6;4;4\right)$ ومنه $\overrightarrow{AH}\left(-4;4;2\right)$ لدينا $A \in (E)$

 $\overrightarrow{AM}.\overrightarrow{CH}=0$ تكافئ (2) تكافئ أنّ العلاقة

وتكافئ $\overrightarrow{MA}.\overrightarrow{CH} + \overrightarrow{AH}.\overrightarrow{CH} = 48$ وتكافئ $(\overrightarrow{MA} + \overrightarrow{AH}).\overrightarrow{CH} = 48$ وتكافئ $(\overrightarrow{MA}.\overrightarrow{CH} + \overrightarrow{AH}.\overrightarrow{CH})$

 $\overrightarrow{MA}.\overrightarrow{CH} = 0$ $\overrightarrow{MA}.\overrightarrow{CH} + 48 = 48$

إذن (E) هي المستوي الذي يشمل A ويكون ألم شعاعا ناظميا له.

الشعبة: تقنى رياضي. دورة مارس 2015

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

 $P(z) = z^3 - 4z^2 + 8z - 8$ حيث: $P(z) = z^3 - 4z^2 + 8z - 8$ کثير حدود المتغيّر المرکب z حيث: $P(z) = z^3 - 4z^2 + 8z - 8$

اً ـ التحقق أنّ 2 هو جذر لكثير الحدود P(z) .

 $P(z) = 2^3 - 4(2)^2 + 8(2) - 8 = 0$ ومنه 2 هو جذر لكثير الحدود

P(z)=0 المعادلة \mathbb{C} المعادلة الأعداد المركبة

 $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب المحام المتعامد والمتجانس 2.

نعتبر النقط A، B و C ذات اللاحقات: $Z_A=1-i\sqrt{3}$ و $Z_B=1+i\sqrt{3}$ ، نعتبر النقط $Z_C=1-i\sqrt{3}$ على الترتيب.

أ ـ كتابة كلا من Z_C ، Z_B و Z_C على الشكل الأستي.

$$z_B = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2e^{i\frac{\pi}{3}}$$

$$z_C = \overline{z_B} = 2e^{-i\frac{\pi}{3}}$$

$$\frac{z_B}{z_C} = \frac{2e^{i\frac{\pi}{3}}}{2e^{-i\frac{\pi}{3}}} = e^{i\left(\frac{\pi}{3} + \frac{\pi}{3}\right)} = e^{i\frac{2\pi}{3}}$$

ب ـ تعيين مجموعة قيم العدد الطبيعي n بحيث يكون $\frac{Z_B}{Z}$ حقيقيا.

$$\left(\frac{z_B}{z_C}\right)^n = \left(e^{i\frac{2\pi}{3}}\right)^n = e^{i\frac{2n\pi}{3}}$$
 لدينا

$$2n = 3k$$
 ومنه $\pi = k \pi$ اي $\arg\left(\frac{z_B}{z_C}\right) = k \pi$ اي $\left(\frac{z_B}{z_C}\right)^n$

لدينا 3 يقسم n و العددان 2 و 3 أوليان فيما بينهما إذن حسب مبرهنة غوص 3α يقسم n ومنه n=3 حيث

$$\sqrt{\frac{z_B^{3n} + z_C^{3n} + 2^{3n+1}}{2}} = 0$$
: n غدد طبيعي فردي عدد عدد عدد عدد البيين أنّه، من أجل كل عدد طبيعي فردي

$$z_{B}^{3n} + z_{C}^{3n} + 2^{3n+1} = \left(2e^{i\frac{\pi}{3}}\right)^{3n} + \left(2e^{-i\frac{\pi}{3}}\right)^{3n} + 2^{3n+1} = 2^{3n}e^{in\pi} + 2^{3n}e^{-in\pi} + 2^{3n+1}$$

$$z_B^{3n} + z_C^{3n} + 2^{3n+1} = -2^{3n} - 2^{3n} + 2^{3n+1} = -2(2)^{3n} + 2^{3n+1} = -2^{3n+1} + 2^{3n+1} = 0$$
equiv (a)

د ـ أنشئ النقط A، B و C

الشعبة: تقنى رياضى دورة مارس 2015

إعداد: مصطفاي عبد العزيز

الحل المفصل للإختبار رقم 13

تعيين طبيعة الرباعي OBAC.

$$\overrightarrow{CA} = \overrightarrow{OB}$$
 لدينا $Z_A - Z_C = Z_B$ ومنه $Z_A - Z_C = 2 - 1 + i\sqrt{3} = 1 + i\sqrt{3}$ لدينا $Z_A - Z_C = 2 - 1 + i\sqrt{3} = 1 + i\sqrt{3}$ وهذا يعني أنّ $Z_A - Z_C = 2 - 1 + i\sqrt{3} = 1 + i\sqrt{3}$ ولدينا $Z_B = e^{i\frac{2\pi}{3}}$ اي $DB = OC$ ولدينا $Z_B = e^{i\frac{2\pi}{3}}$

 $z'=rac{z_A.z-z_C}{z-z_C}$: در فق بكل نقطة z' النقطة M' النقطة M' ذات اللاحقة z' حيث: z'

$$(z-z_B)(\overline{z}-z_C)=1$$
اً . لتكن (E) مجموعة M النقط ذات اللاحقة ع بحيث

(E)تعيين و إنشاء المجموعة

$$(z-z_B)(\overline{z-z_B})=1$$
 وتكافئ $(z-z_B)(\overline{z-z_B})=1$ معناه $(z-z_B)(\overline{z-z_C})=1$

$$\alpha.\overline{\alpha} = |\alpha|^2$$
: تذکیر \Re

$$BM = |z-z_B|$$
ومنه $|z-z_B|$ وعليه $|z-z_B|^2 = 1$

إذن (E) هي الدائرة التي مركزها B ونصف قطرها 1.

$$z'=z_A+\frac{z_C}{z-z_C}$$
 ب - التحقق أنّ

$$z'-z_A = \frac{z_A.\overline{z}-z_C}{\overline{z}-z_C} - z_A = \frac{z_A.\overline{z}-z_C-z_A.\overline{z}+z_A.z_C}{\overline{z}-z_C} = \frac{-z_C+2z_C}{\overline{z}-z_C}$$
 Lui

$$z'-z_A = \frac{z_C}{z-z_C}$$

$$z' = z_A + \frac{z_C}{z - z_C}$$

جـ ـ تبيين أنه عندما تمسح النقطة M المجموعة (E) فإن النقطة M تمسح دائرة (C) يطلب تعيين مركزها ونصف قطرها

$$|z'+z_A| = \frac{z_C}{z-z_B}$$
 دينا $|z'-z_A| = \frac{z_C}{z-z_B}$ معناه $|z'-z_A| = \frac{z_C}{z-z_C}$ دينا

$$|z-z_B| = |z-z_B| = BM$$
 توضیح:

$$|\overline{z-z_B}| = |z-z_B| = BM$$
 او هذا يعني $|z-z_A| = \frac{|z_C|}{|z-z_B|}$ اي $|z-z_A| = \frac{|z_C|}{|z-z_B|}$

$$\left|\overline{z}\right| = \left|z\right|$$
 يذكّر: M تمسح المجموعة E فإن $BM=1$ فإن M تذكّر: M

2 ومنه $2=rac{2}{1}=2$ وعليه فإن ' M تمسح الدائرة C التي مركزها A ونصف قطرها

ولتمرين الرابع: والتمرين الرابع: $g(x) = x^2 - 1 - 2\ln(x)$ بن بنابر الدالة العددية والمعرفة على المجال $g(x) = x^2 - 1 - 2\ln(x)$ المعرفة على المجال والمعرفة على المجال المعرفة على المجال والمعرفة على المجال المعرفة على المجال المعرفة على المجال والمعرفة على المعرفة على

الشعبة: تقني رياضي. دورة مارس 2015

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

gدراسة تغيرات الدالة g.

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 - 1 - 2\ln(x) = +\infty \text{ im } \ln x = -\infty$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \quad \text{if} \quad \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(x - \frac{1}{x} - 2 \frac{\ln x}{x} \right) = +\infty$$

الدالة g تقبل الإشتقاق على محب; 0 ولدينا

$$g'(x) = 2x - \frac{2}{x} = \frac{2x^2 - 2}{x} = \frac{2(x^2 - 1)}{x} = \frac{2(x + 1)(x - 1)}{x}$$

لدينا من أجل كل عدد حقيقي x من المجال $[0;+\infty]$ ، $[0;+\infty]$ ومنه إشارة g'(x) هي نفس إشارة

 $[1;+\infty]$ وبالتالي الدالة g متناقصة تماما على [0;1] ومتزايدة تماما على g

جدول تغيرات الدّالة ع.

- \	\ //		_			
\	\mathcal{L}_{x}	0		1		\$
	g'(x)		_	0	+	
V	g(x)	+8/		0	▼	+8

 $0;+\infty$ استنتاج إشارة g(x) على المجال $0;+\infty$

للدالة g قيمة حدية صغرى على المجال $g(1) \neq 0$ و هي $g(1) \neq 0$ إذن من أجل كل عدد حقيقي x من المجال $g(1) \neq 0$ و هي $g(1) \neq 0$ المجال $g(1) \neq 0$. $g(1) \neq 0$. $g(1) \neq 0$.

$$f\left(x\right)=x+\frac{1-\left(\ln x\right)^{2}}{x}:$$
ب الدالة العددية f المعرّفة على المجال $f\left(x\right)=x+\frac{1-\left(\ln x\right)^{2}}{x}$

.
$$(O; \vec{i}, \vec{j})$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

ياب د مساب
$$\lim_{x \to 0} f(x)$$
 ثمّ فستر النتيجة هندسيا.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x + \frac{1 - (\ln x)^2}{x} = -\infty$$
 لدينا $\lim_{x \to \infty} 1 - (\ln x)^2 = -\infty$ لدينا

$$\lim_{x\to +\infty} \frac{\left(\ln x\right)^2}{x} = 0$$
 تبيين أنّ 2.

 $x=t^2$ نضع $t=\sqrt{x}$ ومنه $t=\sqrt{x}$ إذا كان $t=\sqrt{x}$ بئول إلى فإن $t=\sqrt{x}$

$$\lim_{t \to +\infty} \frac{\ln t}{t} = 0 \text{ if } \lim_{x \to +\infty} \frac{(\ln x)^2}{x} = \lim_{t \to +\infty} \frac{(\ln t^2)^2}{t^2} = \lim_{t \to +\infty} \frac{(2\ln t)^2}{t^2} = \lim_{t \to +\infty} 4\left(\frac{\ln t}{t}\right)^2 = 0$$

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

 $\lim_{x\to +\infty} f(x)$ حساب

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x + \frac{1 - (\ln x)^2}{x} = \lim_{x \to +\infty} x + \frac{1}{x} - \frac{(\ln x)^2}{x} = +\infty$$

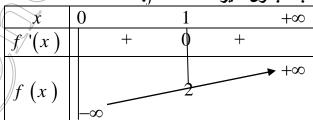
$$f'(x) = \frac{g(x) + (\ln x)^2}{x^2}$$
 ، $]0; +\infty[$ من المجال x عدد حقيقي x من المجال x عدد حقيقي 3

 $x \in]0;+\infty[$ ليكن

$$f'(x) = 1 + \frac{\left(-2\frac{1}{x}\ln x\right)x - \left(1 - \left(\ln x\right)^2\right)}{x^2} = 1 + \frac{-2\ln x - 1 + \left(\ln x\right)^2}{x^2} = \frac{x^2 - 2\ln x - 1 + \left(\ln x\right)^2}{x^2}$$

.]0; + ∞ ومنه الدالة f متز ايدة تماما على $f'(x) = \frac{g(x) + (\ln x)^2}{x^2}$

f - جدول تغيرات الدالة f



 $+\infty$ عند (C_f) عند y=x مقارب مائل للمنكنى (Δ) عند Δ

$$\lim_{x \to +\infty} \left[f(x) - x \right] = \lim_{x \to +\infty} \frac{1 - (\ln x)^2}{x} = \lim_{x \to +\infty} \frac{1}{x} - \frac{(\ln x)^2}{x} = 0$$

 (Δ) بجوار $+\infty$ بجوار (Δ) بجوار المنتقيم

ب ـ دراسة الوضعية النسبية للمنحنى (C_f) بالنسبة إلى المستقيم Δ

 $f(x) - x = \frac{1 - (\ln x)^2}{1 + (\ln x)^2} = \frac{(1 - \ln x)(1 + \ln x)}{1 + (\ln x)^2}$

$$\int_{X} (x)^{-x} dx = \frac{1}{x}$$

 $(1-\ln x)(1+\ln x)$ هي من إشارة f(x)-x

	, , ,		
X	0	ϵ	±∞ +∞
$1-\ln x$	+ () –	I
$1 + \ln x$	_	_) +
f(x)-x	- () +	0 –
الوضعية	(Δ) تحت (C_f)	$\left(\Delta ight)$ فوق $\left(C_{_{f}} ight)$	$\left(\Delta ight)$ تحت $\left(C_{f} ight)$

إعداد: مصطفاي عبد العزيز

الحل المفصل للإختبار رقم 13

 $A\left(e^{-1};e^{-1}
ight)$ و $A\left(e;e
ight)$ يتقاطعان في النقطتين $A\left(e;e
ight)$ و $C_{f}\left(C_{f}
ight)$

 $0.3 < \alpha < 0.4$ عيث أنّ المعادلة f(x) = 0 تقبل حلا وحيدا α ؛ حيث f(x) = 0

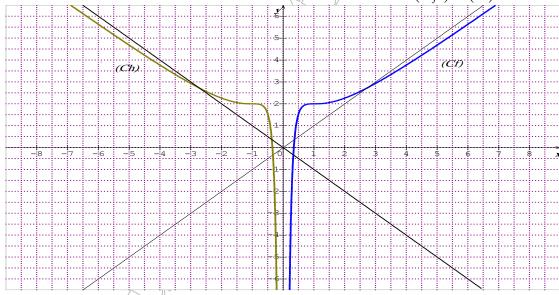
الدالة f مستمرة ومتزايدة تماما على المجال $]\infty+\infty[$ وبالخصوص على المجال [0.3;0.4] ولدينا $(0.3) \approx f(0.4) \approx f(0.3) + f(0.3)$ ويدا $f(0.3) \approx f(0.4) \approx f(0.3)$ تقبل حلا وحيدا $f(0.3) \approx f(0.4)$ وحيدا $f(0.3) \approx f(0.4)$

نعتبر الدّالة العددية h المعرّفة على المجال $]0,\infty$ ب $[-\infty,0]$ ب $[-\infty,0]$ تمثيلها البياني. $[-\infty,0]$

 (C_f) فشرح كيفية رسم المنحنى و المنحنى الطلاقا من المنحنى •

لدينا (C_h) هو نظير (C_f) بالنسبة لمحور التراتيب.

 (C_f) و (Δ) و ب - الرسم



الموضوع الثاني:

التمرين الأوّل:

7 دراسة حسب قيم العدد الطبيعي n بواقي قسمة العدد 2^n على -1 دراسة 2^n على 2^n العدد 2^n على 2^n على 2^n العدد 2^n على 2^n على 2^n على 2^n

 $k\in\mathbb{Z}$ وعليه $2^{3k+2}\equiv 2^{3k+2}\equiv 2^{3k+1}\equiv 2$ و $2^{3k+2}\equiv 2$ حيث $2^{3k}\equiv 1$

n	3 <i>k</i>	3 <i>k</i> +1	3 <i>k</i> +2
باقي قسمة	1	2	4
7 على 2^n			

ر تبيين أنه من أجل كل عدد طبيعي n يكون العدد $3 \times 100^{3n+2} + 8 \times 102^{3n} - 104$ عدد طبيعي n يكون العدد -2 العد

ولدينا $[7] \pm 102 \equiv 1$ معناه $[7] \pm 2^{3(2n)} \equiv 102^{3n} \equiv 2^{3(2n)}$ ومنه $[7] \pm 2^{3(2n)} \equiv 102 \equiv 4$ إذن

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

 $8 \times 102^{3n} \equiv 1[7]$ و عليه 8 = 1[7] و عليه 8 = 1[7]

 $3 \times 100^{3n+2} + 8 \times 102^{3n} - 104 \equiv 5 + 1 - 6 = 104 \equiv 6 = 6 = 100$ ولدينا (3) ولدينا

أي $n = 3 \times 100^{3n+2} + 8 \times 102^{3n}$ عدد طبيعي n العدد أي $3 \times 100^{3n+2} + 8 \times 102^{3n}$

 $3 \times 100^{3n+2} + 8 \times 102^{3n} - 104$ مضاعف للعدد 7.

3- أ ـ هل العدد 101 أولي ؟ برر،

لدينا $10.04 \approx 101$ والعدد 101 لايقبل القسمة على 2 ولا على 3 ولا على 5 ولا على 7 إذن العدد 101 أولي PGCD (505,303).

505 = 303 + 202

303 = 202 + 101

 $202 = 2 \times 101 + 0$

ومنه 101 = (505;303)

505x - 303y = 1111....(1) : المعادلة \mathbb{Z}^2 المعادلة

. $x_0 + 3y_0 = -5$: يحقق (x_0, y_0) علما أن الحل الخاص الخاص (1) علما الخاص

 $6x_0 = 6$ وبجمع المعادلتين نجد $\begin{cases} 5x_0 - 3y_0 = 1.....(1) \\ x_0 + 3y_0 = -5.....(2) \end{cases}$ وبجمع المعادلتين نجد 5x - 3y = 11 دينا (1) تكافئ

 $(x_0, y_0) = (1, -2)$ وعليه $y_0 = -2$ اي $3y_0 = -6$ اي نجد (2) نجد $x_0 = 1$

حل المعادلة

5(x-1)=3(y+2) ومنه 5(x-1)-3(y+2)=0 ومنه 5(x-1)=3(y+2)=0

لدينا 3 يقسم (x-1) و العددان 3 و 5 أوليان فيما بينهما إذن حسب مبر هنة غوص 3 يقسم x-1 ومنه

نجد x=3k+1 نجد x=3k+1 نجد x=3k+1 نجد x=3k+1 نجد

 $k\in\mathbb{Z}$ ومنه y+2=5k ومنه y+2=5k ومنه y+3=5k

x و y موجبان.

.(1) هو حل المعادلة (x;y) هو (x;y) هو حل المعادلة (x;y)

d يعيين القيم الممكنة للعدد

d لاينا d يقسم d للممكنة d لاينا

d=11 يكون يكون (1) حلول المعادلة ميث يكون ($x\,;y\,$) - إيجاد الثنائيات

نضع ' x=11 و ' y و ' y أوليان فيما بينهما x=11

نحصل على 11=' $\times 11$ خاص المعادلة $\times 1$ ومنه $\times 1$ ومنه $\times 1$ نلحظ أن $\times 11$ حل خاص المعادلة

$$5(x-2)=3(y'-3)$$
 ومنه
$$\begin{cases} 5x'-3y'=1\\ 5(2)-3(3)=1 \end{cases}$$
 بالطرح نجد $\begin{cases} 5x'-3y'=1\\ 5(2)-3(3)=1 \end{cases}$

(x'-2) لدينا 3 يقسم 5(x'-2) والعددان 3 و 5 أوليان فيما بينهما إذن حسب مبر هنة غوص 3 يقسم x'-2 ومنه x'-2=3 أي x'-2=3 حيث x'-2=3 بالتعويض في x'-2=3 نجد

A/Elaziz

إعداد: مصطفاي عبد العزيز

الحل المفصل للإختبار رقم 13

وبما أنّ 1=1 5x '-3y ومنه $3\alpha=3$ ومنه $3\alpha=3$ ومنه y ' $-3=5\alpha$ ومنه $3\alpha=3$ وبما أنّ $3\alpha=3$ فإنه حسب مبر هنة بيزو ' x أوليان فيما بينهما.

 $\alpha \in \mathbb{N}$ وبالتالي $y = 55\alpha + 33$ أي $x = 33\alpha + 22$ و $x = 11(3\alpha + 2)$ أي $x = 33\alpha + 22$ حيث $x = 11(3\alpha + 2)$ طريقة ثانية:

$$k+4=11$$
 ومنه $2+4=11$ ومنه $3k+4=11$ أي $3k+4=11$ وعليه $4+4=11$ ومنه $3k+4=11$ ومنه $3k+4=11$ ومنه $3k+4=11$

$$y=5(11lpha-4)-2$$
 و بالتالي $x=3(11lpha-4)+1$ أي $x=3(11lpha-4)+1$ وبالتالي $y=55lpha-22$ أي $y=55lpha-22$

 $lpha\in\mathbb{N}^*$ ومنه مجموعة الحلول هي $\{33lpha-11,55lpha-22\}$ حيث

التمرين الثاني:

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O;\vec{i},\vec{j},\vec{k})$ نعتبر النقط:

والمستقيم (Δ) معرّف بتمثيله الوسيطي $H\left(1;1;0
ight)$ ، $B\left(0;2;-1
ight)$ ، $A\left(2;1;2
ight)$

$$\begin{cases} x = -2 + 6t \\ y = 1 - 2t \quad ; (t \in \mathbb{R}) \\ z = 4t \end{cases}$$

(AB) كتابة تمثيل وسيطي للمستقيم .1

(AB) لدينا \overline{AB} شعاع توجيه للمستقيم لدينا

 $\overrightarrow{AM} = \alpha \overrightarrow{AB} / \alpha \in \mathbb{R}$ ادینا (AB) من M(x;y;z) من أجل كل نقطة

$$\begin{cases} x = 2 - 2\alpha \\ y = 1 + \alpha ; (\alpha \in \mathbb{R}) \end{cases}$$
 ومنه $z = 2 - 3\alpha$

2. تبيين أنّ (AB) و (Δ) لا ينتميان إلى نفس المستوي.

 (Δ) لدينا (B;-2;1;-3) شعاع توجيه لـ(AB) و (AB) و (AB) شعاع توجيه لـ

و $\frac{-2}{6} \neq \frac{1}{6}$ ومنه الشعاعان $\frac{1}{AB}$ و غير مرتبطين خطيا بالتالي المستقيمان $\frac{-2}{6} \neq \frac{1}{6}$ غير متوازيين

$$0$$
 -2

$$\begin{cases}
2-2\alpha = -2+6t \dots (1) \\
1+\alpha = 1-2t \dots (2)
\end{cases}$$
 (AB) نفرض أنّ (AB) و (AB) متقاطعان إذن (AB)

t=2 ومنه t=2 ومنه t=2 بضرب المعادلة (2) في العدد 2 وبجمع المعادلتين

الشعبة: تقتى رياضي. دورة مارس 2015

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

 $\left[\alpha = -4 \quad \left[2 - 2\alpha = 10\right]\right]$ lpha=-4 المعادلات نجد lpha=-3 ومنه lpha=-4 تناقض بالتعويض في جميع المعادلات نجد $\alpha = -2$ $2 - 3\alpha = 8$

ومنه (AB) و (Δ) غير متقاطعين فهما ليسا من نفس المستوي.

 (Δ) هو المستوي الذي بشمل (AB) ويوازي (Δ) .

أ ـ تحقق أنّ الشعاع \vec{n} (1,5,1) أناظمي للمستوي (P).

(P) بما أنّ المستوي (P) يشمل (AB) ويوازي (Δ) فإن (AB) و أن المستوي و هما غير $\overrightarrow{nAB} = 1 \times 6 + 5 \times -2 + 1 \times 4 = 0$ و $\overrightarrow{nAB} = 1 \times -2 + 5 \times 1 + 1 \times -3 = 0$ مرتبطین خطیا ولدینا ومنه $\overrightarrow{n} \perp \overrightarrow{AB}$ و بالتالي الشعاع \overrightarrow{n} ناظمي للمستوي $\overrightarrow{n} \perp \overrightarrow{u}$ و منه

(P)ب ـ كتابة معادلة ديكارتية للمستوي

2+5+2+d=0 المستوي $A\in (P)$ له معادلة من الشكل x+5y+z+d=0 المستوي (P) له معادلة من الشكل (P) أي d=-9 وعليه d=5y+z-9=0 وعليه d=-9

 (Δ) و (P) و (Δ) .

M ($\stackrel{\frown}{=}2+6t;1-2t;4t$) اذن (Δ) انکن M نقطة کیفیة من

$$d\left(M;(P)\right) = \frac{\left|-2 + 6t + 5(1 - 2t) + 4t\right|}{\sqrt{1^2 + 5^2 + 1^2}} = \frac{3}{\sqrt{30}} = \frac{\sqrt{30}}{10}$$

4. تعيين إحداثيات النقطة I منتصف القطعة [AB].

$$I\left(1; \frac{3}{2}; \frac{1}{2}\right) = \frac{1}{2} \cdot y_I = \frac{2+1}{2} = \frac{3}{2} \cdot x_I \frac{0+2}{2} = 1$$

igcup [AB]. ايجاد معادلة ديكارتية للمستوي (Q)؛ المحوري للقطعة

AB المستوي Q ناظمه الشعاع الشعاع النقطة المستوي

 $-2 + \frac{3}{2} - \frac{3}{2} + d = 0$ للمستوي Q معادلة من الشكل Q = -2x + y - 3z + d = 0 للمستوي المعادلة من الشكل

أي d=2 وعليه d=2 d=2 معادلة ديكارتية للمستوي (d=2). d=2 وعليه d=2 مجموعة النقط d=2 مجموعة النقط d=2 مخاطع من الفضاء بحيث: d=2 مجموعة النقط d=2 .

 (Γ) التحقق أنّ النقطة H تنتمي إلى

 $HB^2 = (0 - 1)^2 + (2 - 1)^2 + (-1 - 0)^2 = 3$ و $HA^2 = (2 - 1)^2 + (1 - 1)^2 + (2 - 0)^2 = 5$ لدينا (Γ) ومنه $HA^2 - HB^2 = 2$ ومنه $HA^2 - HB^2 = 2$

استنتاج طبيعة المجموعة (Γ) .

 $\overrightarrow{BA}\left(2\overrightarrow{MI}
ight)=2$ وتكافئ $2=MA^{2}-MB^{2}=2$ أي $\overrightarrow{MA}=MB^{2}=2$

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

 $\overrightarrow{BA}.\overrightarrow{MH} + \overrightarrow{BA}.\overrightarrow{HI} = 1$ وتكافئ $\overrightarrow{BA}.(\overrightarrow{MH} + \overrightarrow{HI}) \neq 1$ وتكافئ $\overrightarrow{BA}.\overrightarrow{MI} = 1$ $H\in (\Gamma)$ دينا $H\in \overline{BA}.\overline{MH}$ وعليه $H=1+\overline{BA}.\overline{MH}+1=1$ وعليه H=1المستوي الذي يشمل H و \overline{BA} شعاع ناظمي .

التمرين الثالث: المستوي منسوب إلى معلم منعامد ومتجانس $(O; \vec{i}, \vec{j})$.

K ، J ، و سمي C التي لواحقها نعتبر النقط C و C على الترتيب. ونسمي C نعتبر النقط C على الترتيب. ونسمي CB منتصفات القطع I الي يحول I التشابه المباشر الذي يحول I الي و I التشابه المباشر الذي يحول I الي I و يحول I التشابه المباشر الذي يحول I التشابه المباشر I التشابه المباشر الذي يحول I التشابه المباشر I التشابه المباسر I التشابه التشابع I التش ين العبارة المركبة للتشابه $\sqrt{3}$ ثمّ عين مركزه ω .

$$z_{K} = \frac{z_{C} + z_{B}}{2} = \sqrt{2} + \frac{1}{2}i \quad \text{3} \quad z_{J} + \frac{z_{A} + z_{C}}{2} = \frac{\sqrt{2}}{2} + i \quad \text{3} \quad z_{I} = \frac{z_{B}}{2} = \frac{\sqrt{2}}{2}$$

العبارة المركبة للتشابه S من الشكل b لشكل b ولدينا S ولدينا S و S العبارة المركبة للتشابه S العبارة المركبة للتشابه S العبارة المركبة للتشابه S من الشكل S

عن (1) نجد
$$z_B = \sqrt{2}$$
 عن (2) نجد $z_B = az_A + b$ نجد (2) نجد $z_B = az_O + b$ نجد (2)

$$z'=rac{\sqrt{2}}{2}iz+\sqrt{2}$$
 هي S وبالتالي العبارة العركبة التشابه $a=rac{z_I-b}{z_A}=rac{-rac{\sqrt{2}}{2}}{i}=rac{\sqrt{2}}{2}i$

$$z_{\Omega} = \frac{\sqrt{2}}{\sqrt{2}i} = \frac{3}{2}i$$
 ذات اللاحقة Ω ذات اللاحقة مركز التشابه هو النقطة الصامدة Ω

S بالتشابه AOBC بالتشابه S

$$S\left(O\right)\!=\!B$$
 و $S\left(A\right)\!=\!I$ لدينا

.S بالتشابه C و \dot{C} بالتشابه \dot{C}

$$z' = \frac{\sqrt{2}}{2}iz_B + \sqrt{2} = \frac{\sqrt{2}}{2}i\sqrt{2} + \sqrt{2} = \sqrt{2} + i = z_C$$

$$S(C) = J$$
 وعليه $z' = \frac{\sqrt{2}}{2}iz_C + \sqrt{2} = \frac{\sqrt{2}}{2}i\left(\sqrt{2} + i\right) + \sqrt{2} = \frac{\sqrt{2}}{2} + i = z_J$

AOBC وبالتالي صورة المستطيل AOBC هو المستطيل

د. نعتبر التحويل $S \circ S = S^2 = S$.

 S^2 بالتحويل A ، B ، O النقط التحويل .

$$S^{2}(O) = C$$
 ومنه $S^{2}(O) = S \circ S(O) = S(S(O)) = S(B) = C$

$$S^{2}(B)=J$$
 ومنه $S^{2}(O)=S\circ S(B)=S(S(B))=S(C)=J$

$$S^{2}(O) = S \circ S(A) = S(S(A)) = S(I)$$

الشعبة: تقتى رياضي. دورة مارس 2015

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

تعيين صورة 1 بالتشابه S.

$$S(I) = K$$
 وعليه $z' = \frac{\sqrt{2}}{2}iz_I + \sqrt{2} = \frac{\sqrt{2}}{2}i\left(\frac{\sqrt{2}}{2}\right) + \sqrt{2} = \sqrt{2} + \frac{1}{2}i = z_K$

 $S^2(A) = K$ إذن $S^2(A) = K$ برهن أن S^2 تحاك يطلب تعيين عناصره.

$$\Omega$$
 هو تشابه مباشر نسبته $\frac{1}{2}$ أي نسبته $\frac{1}{2}$ زاويته π ومركزه S^2

 Ω إذن S^2 تحاك نسبته $\frac{1}{2}$ ومركزه

جـ استنتج أنّ المستقيمات (OC)، (AK) متقاطعة.

(OC) لدينا $S^{\,2}(O)=C$ ومنه النقط $S^{\,2}(O)=C$ و لدينا $S^{\,2}(O)=C$ الدينا

و $S^{\,2}(B)=J$ ومنه النقط $S^{\,2}(B)=J$ و منه النقط $S^{\,2}(B)=J$ و منه النقط و الن

و $S^{\,2}(A)=K$ و منه النقط $S^{\,3}(A)=K$ و $S^{\,2}(A)=K$ و احدة أي $S^{\,2}(A)=K$

(AK)، (BJ)، (OC) إذن المستقيمات (AK)، (BJ)، (OC)

التمرين الرابع:

$$g(x) = \frac{2x}{x+1} - \ln(x+1)$$
 يعتبر الدالة g المعرفة على المجال $g(x) = \frac{2x}{x+1} - \ln(x+1)$ يعتبر الدالة و المعرفة على المجال $g(x) = \frac{2x}{x+1} - \ln(x+1)$

1. دراسة تغيرات الدالة g، ثم شكل جدول تغيراتها.

الدّالة g تقبل الإشتقاق على $]0;+\infty$ ولدينا:

$$g'(x) = \frac{2}{(x+1)^2} - \frac{1}{x+1} = \frac{2 - (x+1)}{(x+1)^2} = \frac{1 - x}{(x+1)^2}$$

1-x إشارة g'(x) هي نفس إشارة

 $[1;+\infty[$ ومتناقصة تماما على [0;1] ومتناقصة تماما على $[0;+\infty[$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{2x}{x+1} - \ln(x+1) = -\infty$$

جدول تغيرات الدالة g.

х	0		1		$+\infty$
g'(x)		+	0	_	
g(x)	0	/	1 – ln 2		

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

 $[1;+\infty]$ على المعادلة g(x)=0 تقبل حلا وحيدا α على المجال .2

الدالة g مستمرة ومتناقصة تماما على المجال $[1;+\infty[$ وتأخذ قيمها في المجال $[-\infty;1-\ln 2]$ والدالة g(x)=0 إذن المعادلة g(x)=0 تقبل حلا وحيدا α في المجال $[0;+\infty[$

 $3.9 < \alpha < 4$ التحقق أن

 $3.9 < \alpha < 4$ دينا $g(3.9) \times g(4) < 0$ اي $g(4) \approx -0.009$ و $g(3.9) \approx 0.002$ لدينا

g(x) قیم x اشاره x عبین، حسب قیم x

х	0 0	α	+∞
g(x)	+	0	_

$$f(x) = e^{-x} \ln(e^{2x} + 1)$$
 بالدالة المعرفة على $f(x) = e^{-x} \ln(e^{2x} + 1)$

ه معلم متعامد ومتجانس
$$(C_f)$$
 تمثیلها البیانی فی معلم متعامد ومتجانس (C_f)

 $-\infty$ عند f عند f عند $-\infty$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\ln(e^{2x} + 1)}{e^x} = \lim_{x \to -\infty} \frac{\ln(e^{2x} + 1)}{e^{2x}} \times e^x = 0$$

$$\lim_{x \to \infty} e^{x} = 0$$
 و $\lim_{x \to \infty} \frac{\ln(e^{2x} + 1)}{e^{2x}} = \lim_{t \to 0} \frac{\ln(t + 1)}{t} = 1$ لأن

.
$$\lim_{x \to +\infty} f(x)$$
 ثم احسب $f(x) = \frac{2x}{e^x} + \frac{\ln(e^{-2x} + 1)}{e^x}$ ثم احسب .2

$$f(x) = \frac{\ln(e^{2x} + 1)}{e^x} = \frac{\ln e^{2x} \left(1 + e^{-2x}\right)}{e^x} = \frac{\ln e^{2x} + \ln(1 + e^{-2x})}{e^x}$$

$$f(x) = \frac{2x + \ln(1 + e^{-2x})}{e^x} = \frac{2x}{e^x} + \frac{\ln(e^{-2x} + 1)}{e^x}$$

$$\lim_{x \to +\infty} \frac{\ln(e^{-2x} + 1)}{e^{x}} = 0 \quad \text{i} \quad \lim_{x \to +\infty} \frac{2x}{e^{x}} = 0 \quad \text{if} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x}{e^{x}} + \frac{\ln(e^{-2x} + 1)}{e^{x}} = 0$$

 $f'(x) = e^{-x} g(e^{2x}) x$. أ ـ تبيين أنه من أجل كل عدد حقيقي $f'(x) = e^{-x} g(e^{2x})$.

لیکن x عددا حقیقیا:

$$f'(x) = e^{-x} \ln(e^{2x} + 1) + \frac{2e^{2x}}{e^{2x} + 1}e^{-x} = e^{-x} \left(\frac{2e^{2x}}{e^{2x} + 1} - \ln(e^{2x} + 1)\right) = e^{-x} g(e^{2x})$$

ب ـ تعيين إشارة (x) ب

$$g\left(e^{2x}
ight)$$
 مثل إشارة $f'(x)$ مثل

$$x = \frac{\ln \alpha}{2}$$
 تكافئ $e^{2x} = \ln \alpha$ وتكافئ $e^{2x} = \alpha$ تكافئ $g(e^{2x}) = 0$ أي $g(e^{2x}) = 0$

إعداد: مصطفاى عبد العزيز

الحل المفصل للإختبار رقم 13

$$x < \frac{\ln \alpha}{2}$$
 ي أي $2x < \ln \alpha$ وتكافئ $e^{2x} < \alpha$ وتكافئ $g\left(e^{2x}\right) < 0$ يعني $f'(x) > 0$ $x > \frac{\ln \alpha}{2}$ ي أي $2x > \ln \alpha$ وتكافئ $e^{2x} > \alpha$ وتكافئ $g\left(e^{2x}\right) > 0$ أي $f'(x) < 0$ وبالتالي الدالة $f'(x) < 0$ متزايدة تماما على $e^{2x} > \alpha$ ومتناقصة تماما على $e^{2x} > \alpha$ ومتناقصة تماما على $e^{2x} > \alpha$

جدول تغيّرات الدالة f.

		<i>)</i>	9.0	- • •
X	<u>l</u>	$\frac{n \alpha}{2}$		+∞
f'(x)	+	0 –		
f(x)	$\int_{0}^{\pi} f\left(\frac{1}{2}\right)^{n} dt$	$\left(\frac{\ln \alpha}{2}\right)$	_	• 0

$$f\left(\frac{\ln \alpha}{2}\right) \approx 0.8$$
 و $\frac{\ln \alpha}{2} \approx 0.6$ و $\frac{\ln \alpha}{2} \approx 0.6$ و $f\left(\frac{\ln \alpha}{2}\right) = \frac{2\sqrt{\alpha}}{\alpha+1}$ و $f\left(\frac{\ln \alpha}{2}\right) = \frac{2\sqrt{\alpha}}{\alpha+1}$

$$\frac{2\alpha}{\alpha+1} - \ln(\alpha+1)$$
 معناه $g(\alpha) = 0$ البينا $g(\alpha) = \frac{\ln(1+e^{2\frac{\ln \alpha}{2}})}{e^{\frac{\ln \alpha}{2}}} = \frac{\ln(1+\alpha)}{e^{\ln\sqrt{\alpha}}} = \frac{\ln(1+\alpha)}{\sqrt{\alpha}}$

$$f\left(\frac{\ln \alpha}{2}\right) = \frac{\alpha+1}{\sqrt{\alpha}} = \frac{2\alpha}{\sqrt{\alpha}(\alpha+1)} = \frac{2\sqrt{\alpha}}{\alpha+1}$$
 وعليه $\ln(\alpha+1) = \frac{2\alpha}{\alpha+1}$

