الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

ثانوية : المجاهد الحاج خيري الخير -مقرة-يوم : 16 ماي 2022 مديرية التربية لولاية المسيلة امتحان البكالوريا التجريبي المستوى: 03 علوم تجريبية

اختبار في مادة : الرياضيات المدة : 30 ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين : الموضوع الأوّل :

التمرين الأول: (04 نقاط)

عيّن الإقتراح الصحيح الوحيد من بين الإقتراحات الثلاثة في كل حالة من الحالات التالية مع التبرير:

 $f(x) = e^x + 2e^{-x} - 3$ الدالة العددية للمتغير الحقيقي x المعرفة على x كما يلي : $f(x) = e^x + 2e^{-x} - 3$ القيمة المتوسطة للدالة $f(x) = e^x + 2e^{-x} - 3$ مدوّر $f(x) = e^x + 2e^{-x} - 3$ القيمة المتوسطة للدالة $f(x) = e^x + 2e^{-x} - 3$ مدوّر $f(x) = e^x + 2e^{-x} - 3$ القيمة المتوسطة للدالة $f(x) = e^x + 2e^{-x} - 3$ مدوّر $f(x) = e^x + 2e^{-x} - 3$ المعرفة على المجال $f(x) = e^x + 2e^{-x} - 3$ المعرفة على المعرفة على $f(x) = e^x + 2e^{-x} - 3$ المعرفة على المعرفة على $f(x) = e^x + 2e^{-x} - 3$ الدالة المتغير المعرفة على $f(x) = e^x + 2e^{-x} - 3$ المعرفة على المعرفة على $f(x) = e^x + 2e^{-x} - 3$ المعرفة على المعرفة على

: و تشكل حدودًا متعاقبة لمتتالية هندسية فإن $\left(e^{-2}-e^{-4}\right)$ ، $\left(1-e^{-2}\right)$: الإعداد $a=e^{-4}-e^{-6}$ (ج $a=e^{-4}-e^{-6}$ (ج

3) يفتح قفل بتشكيل حرفين من المجموعة $\{A;B;C\}$ ثم يتبع بعدد مكون من 5 أرقام من المجموعة $\{0;1;2;3;4;5;6;7;8;9\}$. عدد الطرق الممكنة لفتح هذا القفل هي:

 $3^2 \times 10^5$ (\Rightarrow $A_3^2 \times 10^5$ (\Rightarrow $A_3^2 \times A_{10}^5$ (\Rightarrow

4) يحتوي كيس على كرتين بيضاوين و n كرة سوداء (n عدد طبيعي حيث : $2 \leq n$) . احتمال سحب كرتين سوداوين في آن واحد هو:

 $\frac{2}{(n+2)(n+1)} \left(\overline{z} \right) \qquad \frac{n^2 - n}{(n+2)(n+1)} \left(\overline{y} \right) \qquad \frac{n}{(n+2)(n+1)} \left(\overline{y} \right)$

التمرين الثاني: (05 نقاط)

: بحيث ، بحيث بنتو متماثلين U_1 و U_2 بهما كرات متماثلة V_1 نفر فينها باللّمس ، بحيث

0,1,1 يحتوي على خمس كرات حمراء تحمل الأرقام 0,2,1,1,1 وثلاث كرات خضراء تحمل الأرقام U_1

 U_2 : يحتوي على ثلاث كرات حمراء تحمل الأرقام 2,1,1 وكرتين خضراوين تحملان الرقمين U_2

- نختار عشوائيًا أحد الصندوقين فإذا كان U_1 نسحب منه كرتين على التوالي بدون إرجاع وإذا كان U_2 نسحب منه كرتين على التوالي و بإرجاع.

- 1) أحسب احتمال الحوادث التالية : A: "سحب كرتين من نفس اللون" B: "سحب كرتين تحملان نفس الرقم" .
 - . بيّن أن $P(A \cap B) = \frac{37}{175}$ ، هل الحادثتان A و A مستقلتان؟ علّل (2
 - U_1 ونين مختلفين ، فما هو احتمال أن تكون من الصندوق U_1 ؛
- 4) نأخذ الكرات الموجودة في الصندوقين U_1 و U_2 و نضعها جميعها في صندوق واحد U_3 . نسحب عشوائيا من الصندوق U_3 كرتين في آن واحد وليكن U_3 المتغير العشوائي الذي يرفق بكل سحبة مجموع رقمي الكرتين المسحوبتين.
 - أ) عين قيم المتغير العشوائي X ، عرّف قانون إحتماله ثم أحسب V(-3X+7) .

اختبار في مادة: الرياضيات / الشعبة: 03 علوم تجريبية

التمرين الثالث: (04 نقاط)

 $U_{n+1} = \left(\frac{n+1}{2n}\right)U_n$ غير معدوم: $U_n = \frac{1}{2}$ و من أجل كل عدد طبيعي غير معدوم: $U_n = \frac{1}{2}$

- $U_n \geq 0$: أ) برهن بالتراجع ، من أجل كل عدد طبيعي n غير معدوم أن (1
- (U_n) ، استنتج أنها متقاربة ثم عين نهاية المتتالية (U_n) ، استنتج أنها متقاربة ثم عين نهاية المتتالية
 -) لتكن المنتالية (V_n) المعرفة كما يلي: $V_n = \frac{U_n}{n}$ حيث $N_n = V_n$ عدر معدوم.
 - أ) أثبت أنّ المتتالية (V_n) هندسية يُطلب تعيين أساسها وحدّها الأول V_1
 - n بدلاله U_n بدلاله v_n بدلاله v_n بدلاله v_n
- $W_n = \ln(V_n)$: غير معدوم بــ: n غير المعرفة من أجل كل عدد طبيعي عبر معدوم بــ: (W_n) المعرفة من أجل كل عدد طبيعي n غير معدوم بــ: (W_n) حسابية يطلب تعيين أساسها وحدها الأول W_n .
 - $P_n = \frac{U_1 \times U_2 \times \cdots \times U_n}{n!}$ و $S_n = W_1 + W_2 + \cdots + W_n$ و $S_n = S_n$ و $S_n = W_1 + W_2 + \cdots + W_n$ و $S_n = S_n$

التمرين الرابع: (07 نقاط)

- . $g(x) = 1 x^2 (1 \ln(x))$:...]0; + ∞ [المجال على المجال g (I
 - 1) أدرس تغيرات الدالة g ثم شكل جدول تغيراتها .
- \cdot . $1 < \alpha < e$: ميث أنّ المعادلة g(x) = 0 تقبل حلين أحدهما 1 الآخر (2
 - x عيّن إشارة g(x) تبعا لقيم (3
- (II دالة عددية معرفة بــ: $f(x) = \frac{1}{x(1-\ln(x))}$ وليكن $f(x) = \frac{1}{x(1-\ln(x))}$ المنسوب إلى المعلم $f(x) = \frac{1}{x(1-\ln(x))}$ المتعامد و المتجانس $f(x) = \frac{1}{x(1-\ln(x))}$ مستقيم معادلته $f(x) = \frac{1}{x(1-\ln(x))}$ وحدة الطول 2cm.
 - $D_f =]0; \mathbf{e}[\cup] \, \mathbf{e}; +\infty[$ ، ثم استنج أن \mathbf{R} المعادلة (1 معادلة) منا ، $\mathbf{x}(1 \ln x) = 0$
 - 2) عيّن نهاية الدالة f عند أطراف مجموعة التعريف ، ثم فسّر النتائج بيانيا.
 - $f'(x) = \frac{\ln(x)}{x^2 (1 \ln(x))^2} : D_f$ من x عدد حقیقي عدد حقیقي (3
 - 4) أدرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها .
 - $f(x) x = \frac{g(x)}{x(1 \ln(x))}$: فإن D_f من أجل كل x من أجل كل أ
 - \cdot D_f من x عدد حقیقی x من أجل كل عدد حقیقی x من أدرس الوضعیة النسبیة بین x
 - $\cdot (D)$ و (C_f) و (6
 - D_f من أجل كل عدد حقيقي x من أجل كل عدد حقيقي م من أجل كل مدد حقيقي x من أجل كل عدد حقيقي x من أحسب الدالة المشتقة للدالة x
- ب) بيّن أن $: Cm^2 : \int_{1}^{\sqrt{e}} f(x) dx = \ln(2)$ ثم أُحسب بـ $Cm^2 : Cm^2 : \int_{1}^{\sqrt{e}} f(x) dx = \ln(2)$ ثم أُحسب بـ $Cm^2 : Cm^2 : Cm^2 : Cm^2 : Cm^2$ ثم أُحسب بـ $Cm^2 : Cm^2 : Cm$

الموضوع الثّاني:

التمرين الأول: (04 نقاط)

عيّن الإقتراح الصحيح الوحيد من بين الإقتراحات الثلاثة في كل حالة من الحالات التالية مع التبرير:

: فإن
$$(U_n)$$
 متتالية عددية معرفة كما يلي $u_0 = e$, $u_1 = e^2$ ، فإن u_n متتالية u_n التكن u_n متتالية عددية معرفة كما يلي u_n التكن u_n متتالية ولا هندسية أساسها u_n عندسية أساسها u_n و هندسية أساسها u_n عندسية أساسها u_n

 e^{-e} () e^{-e} (e^{-e}

2) حلول المعادلة التفاضلية :
$$y'' = \frac{1}{x^2}$$
 في \mathbb{R} هي الدوال من الشكل: $g(x) = \ln|x| + c_1 x + c_2$ ب $g(x) = -\frac{1}{x} + c$ أ

$$P(A) = 0.4$$
 و $P(A) = 0.4$ و $P(A) = 0.5$ و $P(A \cup B) = 0.12$ (3) عان مستقلتان من مجموعة إمكانيات بحيث: $P(A \cup B) = 0.12$ (4) $P(A \cup B) = 0.12$ (5) $P(A \cup B) = 0.12$ (7) $P(A \cup B) = 0.12$ (8) جاء المحتوية ال

4) يتكون قسم مختلط من 18 تلميذا و 12 تلميذة ، يراد تشكيل لجنة للقسم تضم رئيسا و نائبا و أمينا. عدد اللجان التي يمكن تشكيلها بحيث التلميذ X موجودا في اللجنة هو:

484 (ج علا ما علا 184 علا علا 184 علا الله علا 184 علا 184 علا الله علا 184 ع

 $g(x) = -\ln|x| + c_1 x + c_2$

التمرين الثاني: (05 نقاط)

صندوق يحوي 8 كرات سوداء ثلاثة منها تحمل الرقم 1 و ثلاثة منها تحمل الرقم 0 واثنتان منها تحمل الرقم 1 وكرتين حمراوين تحملان الرقمين 1 ، 2. لا نميز بين الكرات عند اللمس.

I) نسحب عشوائيا من الصندوق كرتين في آن واحد.

1) أحسب احتمال الحوادث التالية:

A: سحب كرتين من نفس اللون. B: سحب كرة سوداء على الأكثر. C: سحب كرة سوداء على الأقل.

2) نعتبر المتغير العشوائي X الذي يرفق كل عملية سحب جداء الرقمين المسجلين على الكرتين.

أ) عين قيم X ثم عيّن قانون احتماله.

 $E(X^2)$ ب عيّن قانون احتمال المتغير العشوائي X^2 ثم أحسب أمله الرياضياتي

 $1 \le n \le 9$ نسحب عشو ائيا من الصندوق n كرة في آن واحد حيث نسحب (II

نسمي P(D) احتمال الحادثة :"سحب كرة و احدة حمراء فقط".

 $P(D) = \frac{7}{15}$ من أجل P(D) من أجل عيّن قيم العدد الطبيعي P(D) من أجل المحدد الطبيعي (1

التمربن الثالث: (04 نقاط)

.
$$U_{n+1} = \frac{2U_n}{\sqrt{U_n^2 + 1}}$$
: n عدد طبیعي عدد طبیعی $U_0 = 1$:... الله عددیة معرفة علی $U_0 = 1$

- . $1 \le U_n \le \sqrt{3}$: n عدد طبیعي أُ أَجل كل عدد أَنَّه من أَجل كل عدد طبیعي أ
 - بيّن أن المتتالية (U_n) متزايدة.
 - . ℓ استنتج أن المتتالية (U_n) متقاربة ثم عيّن نهايتها \bullet
- $V_n = \frac{(U_n)^2}{3 (U_n)^2}$: کما یلي: الله عددیة معرفة علی الله عددیة عددیة عددیة عددیة عددیة علی الله عددیة عددیة عددیة عددیة علی الله عددیة عددیق عددیت عددیق ع

اختبار في مادة: الرياضيات / الشعبة: 03 علوم تجريبية

أ) بين أنّ المتتالية (V_n) هندسية يطلب تعيين أساسها وحدها الأول.

 $\cdot n$ بدلاله U_n ثم U_n بدلاله V_n

 $T_n = \frac{S_n}{n}$ و $S_n = (U_1)^2 + (U_2)^2 + \dots + (U_{n-1})^2$ و غير معدوم: $S_n = (U_1)^2 + (U_2)^2 + \dots + (U_{n-1})^2$ و $S_n = (U_1)^2 + \dots + (U_n)^2 + \dots + (U_n)^2$

أ) تحقق أن $S_{n+1}=S_n+(U_n)^2$ ، ثم برهن بالتراجع أنه من أجل كل عدد طبيعي n غير معدوم: $n\leq S_n\leq 3n$

 $nS_{n+1}-(n+1)S_n=nU_n^2-S_n$ غير معدوم: n غير عدد طبيعي عدد طبيعي بيّن أنه من أجل كل عدد طبيعي

ج) اُحسب T_{n+1} ، ثم استنتج أن T_n متتالية متز ايدة .

التمرين الرابع: (07 نقاط)

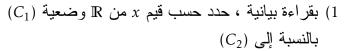
I المستوي منسوب إلى معلم متعامد و متجانس في الشكل المقابل:

و (C_2) و الترتيب التمثيلان البيانيان للدالتين العدديتين (C_1)

 $x \longmapsto x + 2$ و $x \longmapsto e^{-x}$ المعرفتين على \mathbb{R} بين

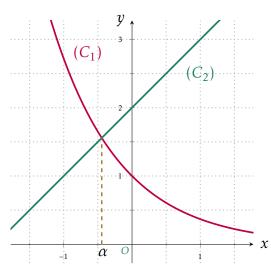
. α يتقاطعان في نقطة وحيدة فاصلتها (C_2) و (C_1)

 $g(x) = e^{-x} - x - 2$ الدالة العددية g معرفة على الدالة العددية العددية الدالة العددية العرفة على الدالة العددية العرفة على الدالة العددية العرفة على الدالة العددية العرفة على العرف



g(x) إستنتج حسب قيم x إشارة (2

 $-0.5 < \alpha < -0.4$: تحقق أنّ (3



دالة معرفة على : \mathbb{R} بياني في المستوي المنسوب إلى $f(x) = -x + 1 + \frac{x-1}{e^x}$ بياني في المستوي المنسوب إلى $f(x) = -x + 1 + \frac{x-1}{e^x}$ المعلم المتعامد و المتجانس $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول على المعلم المتعامد و المتجانس ($f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$ وحدة الطول $f(x) = -x + 1 + \frac{x-1}{e^x}$

 $\cdot \lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ و (1)

 $f'(x) = -\frac{g(-x)}{e^x}$:x عدد حقیقی عدد کل غده ازّه من أنّه من أجل كل عدد حقیقی

ج) أدرس إتجاه تغير الدالة f ، ثم شكل جدول تغير اتها.

بيّن أن المستقيم (C_f) خو المعادلة y=-x+1 مقارب مائل المنحنى (D) عند (2

ب) أدرس وضعية (C_f) بالنسبة للمستقيم (C_f).

 $.f(-\alpha)$ بین أنّ : $f(-\alpha) = \alpha + \frac{1}{\alpha + 2}$: نم استنج حصرًا لـ (3

4) بيّن أنّ المنحنى $\binom{C_f}{2}$ يقبل مماسًا $\binom{T}{2}$ معامل توجيهه $\binom{T}{2}$ ثم أكتب معادلته.

(T) و (D) ، (C_f) و (5).

f(x) = -x + 2m ناقش حسب قيم الوسيط الحقيقي m عدد حلول المعادلة (6

7) باستعمال المكاملة بالتجزئة أحسب بـ (C_f) ، (C_f) ، المستوي المحدد بالمنحنى (C_f) ، (C_f) ، التراتيب والمستقيم ذو المعادلة : (C_f) ، (C_f) ، التراتيب والمستقيم ذو المعادلة : (C_f)

إنتهى الموضوع الثاني

الموضوع الأول :

التمرين الأول:

تعيين الإقتراح الصحيح الوحيد من بين الإقتراحات الثلاثة في كل حالة من الحالات التالية مع التبرير:

- الدالة العددية للمتغير الحقيقي x المعرفة على $\mathbb R$ كما يلى: $f(x) = e^x + 2e^{-x} - 3$
- القيمة المتوسطة للدالة f على المجال [0;2] ، مدوّر m إلى الوحدة هو: m

$$m = \frac{1}{2} \int_{0}^{2} e^{t} + 2e^{-t} - 3dt = \frac{1}{2} \left[e^{t} - 2e^{-t} - 3t \right]_{0}^{2}$$
 التبرير:

$$m = \frac{1}{2} \left[e^2 - 2e^{-2} - 6 - 1 + 2 \right] = \frac{e^2 - 2e^{-2} - 5}{2} \approx 1.05$$
 ومنه:

ومنه مدوّر m إلى الوحدة هو: 1.

- و a تشكل حدودًا متعاقبة لمتتالية $(e^{-2}-e^{-4})$ ، $(1-e^{-2})$: إذا كانت الأعداد $a = e^{-4} - e^{-6}$ (هندسية فإن: ج)
- التبرير: بما أن الأعداد : $(\mathrm{e}^{-2}-\mathrm{e}^{-4})$ ، $(\mathrm{1}-\mathrm{e}^{-2})$ و a تشكل حدودًا متعاقبة لمتتالية هندسية فإن: $(e^{-2} - e^{-4})^2 = a \times (1 - e^{-2})$ ومنه

$$a = \frac{\left(e^{-2} - e^{-4}\right)^2}{\left(1 - e^{-2}\right)} = \frac{e^{-4}\left(1 - e^{-2}\right)^2}{\left(1 - e^{-2}\right)} = e^{-4}\left(1 - e^{-2}\right) = e^{-4} - e^{-6}$$

- 3) يفتح قفل بتشكيل حرفين من المجموعة {A; B; C} ثم يتبع بعدد مكون من 5 التبرير: نختار من المجموعة $p=2:\{A;B;C\}$ عنصرا منها و نختار من بين أرقام عدد مكون من p=5 رقما من المجموعة $\{0\,;\cdots\,;0\}$ ومنه عدد الطرق 10
 - $n \ge 2$ مع کرتین بیضاوین و n کرة سوداء مع $n \ge 2$ $\frac{n-n}{(n+2)(n+1)}$ (ب واحد هو: ب موداوین في آن واحد هو: التبرير: لدينا:

$$\frac{C_n^2}{C_{n+2}^2} = \frac{\frac{n!}{2!(n-2)!}}{\frac{(n+2)!}{2!n!}} = \frac{n(n-1)(n-2)!}{2!(n-2)!} \frac{2!n!}{(n+2)(n+1)n!}$$

$$\frac{C_n^2}{C_{n+2}^2} = \frac{n(n-1)}{2} \frac{2}{(n+2)(n+1)} = \frac{n^2 - n}{(n+1)(n+2)}$$
:ومنه:

التمرين الثاني :

نعتبر صندوقین متماثلین U_1 و U_2 بهما كرات متماثلة لا نفرّق بینها باللمس ،

. يحتوي على خمس كرات حمراء تحمل الأرقام 0,2,1,1,1 وثلاث كرات U_1 خضراء تحمل الأرقام 0,1,1.

يحتوي على ثلاث كرات حمراء تحمل الأرقام 2,1,1 وكرتين خضراوين تحملان U_2

- نختار عشوائيًا أحد الصندوقين فإذا كان U_1 نسحب منه كرتين على التوالى بدون إرجاع وإذا كان U2 نسحب منه كرتين على التوالي و بإرجاع.
 - 1) حساب احتمال كل حادثة من الحوادث: B ، A : (2R; 2V)_{U1}, (2R; 2V)_{U2} : A الحادثة

$$P(A) = \frac{1}{2} \frac{A_5^2 + A_3^2}{A_8^2} + \frac{1}{2} \frac{3^2 + 2^2}{5^2} = \frac{689}{1400}$$
 : اِذَن

 $(1,1)_{U2},(2,2)_{U2},(0,0)_{U2}$ $(1,1)_{U1},(0,0)_{U1}$:B الحادثة

$$P(B) = \frac{1}{2} \frac{A_5^2 + A_2^2}{A_8^2} + \frac{1}{2} \frac{3^2 + 1^2 + 1^2}{5^2} = \frac{583}{1400} : \dot{\ } \dot{\$$

2) الحادثة A∩B: سحب كرتين تحملان نفس اللّون ونفس الرقم: $(V_0,V_0)_{U2},(R_2,R_2)_{U2}\ (R_1,R_1)_{U2},(V_1,V_1)_{U2}\ (R_1,R_1)_{U1},(V_1,V_1)_{U1}$

 $p(A \cap B) = \frac{1}{2} \frac{A_3^2 + A_2^2}{A_2^2} + \frac{1}{2} \frac{2^2 + 1^2 + 1^2 + 1^2}{5^2} =$

. لدينا $p(A \cap B) \neq 0.2114 + p(A \cap B)$ ، ومنه الحادثتان A و B غير

3) إذا علمت أن الكرتين المسحوبتين من لونين مختلفين ، فما هو احتمال أن تكون من الصندوق U₁:

$$P_{\overline{A}}(U_1) = \frac{P(\overline{A} \cap U_1)}{P(\overline{A})} = \frac{P(\overline{A}) \cap U_1)}{1 - P(A)}$$

الحادثة $\overline{A} \cap U_1$: سحب كرتين مختلفتى اللون من \overline{U} أي: $\overline{A} \cap U_1$ ومنه:

$$.P_{\overline{A}}(U_1) = \frac{\frac{1}{2} \frac{2A_5^1 A_3^1}{A_8^2}}{1 - P(A)} = \frac{125}{237}$$

 U_2 نأخذ الكرات الموجودة في الصندوقين U_1 و U_2 ونضعها جميعها في صندوق

نسحب عشوائيا من الصندوق 3 U كرتين في آن واحد وليكن X المتغير العشوائي الذي يرفق بكل سحبة مجموع رقمي الكرتين المسحوبتين.

> $X = \{0; 1; 2; 3; 4\}$ هي $X = \{0; 1; 2; 3; 4\}$ X=0 معناه سحب كرتين تحملان الرقم ومنه

$$P(X=0) = \frac{C_3^2}{C_{13}^2} = \frac{1}{78}$$

 $^{-13}$ معناه سحب كرتين تحملان الرقمين $^{-13}$ و $^{-13}$

$$P(X = 1) = \frac{C_3^1 \times C_8^1}{C_{13}^2} = \frac{24}{78}$$

$$X=2$$
 معناه سحب كرتين تحملان الرقمين 1 و 1 أو 0 و 2 ومنه $X=2$ معناه سحب كرتين تحملان الرقمين 1 و 1 أو 0 و 2 ومنه $P(X=2)=\frac{C_8^2+C_3^1\times C_2^1}{C_{13}^2}=\frac{34}{78}$ $X=3$ معناه سحب كرتين تحملان الرقمين 2 و 1 ومنه

$$P(X=3) = \frac{C_8^1 \times C_2^1}{C_{13}^2} = \frac{16}{78}$$
 $X=4$ معناه سحب كرتين تحملان الرقم 2 ومنه

$$P(X = 4) = \frac{C_2^2}{C_{13}^2} = \frac{1}{78}$$

قانون إحتمال المتغير العشوئي X:

$X = x_i$	0	1	2	3	4
$p(X = x_i)$	$\frac{3}{79}$	$\frac{24}{79}$	$\frac{34}{79}$	$\frac{16}{79}$	$\frac{1}{79}$

$$V(X) = \frac{352}{307} \approx 0.7$$
 $gamma E(X) = \frac{24}{13} \approx 1.89$
$$V(-3X+7) = 9V(X) = 9 \times \frac{352}{307}$$

. $\mathbf{U}_{n+1} = \left(\frac{n+1}{2n}\right)\mathbf{U}_n$ کل عدد طبیعی غیر معدوم:

. $\mathbf{U}_n \geq 0$ نبرهن بالتراجع ، من أجل كل عدد طبيعي n غير معدوم أن: $0 \geq 0$

 $\mathbf{U}_n \geq 0$: من أجل كل عدد طبيعي n غير معدوم نسمي الخاصية

من أجل n=1 لدينا $0 \leq \frac{1}{2} \geq 0$ ومنه p(1) صحيحة

 $n \ge 1$: نفرض صحة p(n) من أجل n عدد طبيعي كيفي حيث

 $\mathbf{U}_{n+1} \ge 0$ و نثبت صحة p(n+1) أي

لدينا من الفرض p(n+1) ومنه $U_n \ge 0$ ومنه $U_n \ge 0$ صحيحة

 $U_n \ge 0$ غير معدوم: n غير عدد طبيعي

ب) دراسة اتجاه تغير المتتالية (\mathbf{U}_n) وإستنتاج أنها متقاربة

$$\mathbf{U}_{n+1} - \mathbf{U}_n = \left(\frac{n+1}{2n} - 1\right)\mathbf{U}_n = \frac{n+1-2n}{2n}\mathbf{U}_n = \frac{1-n}{2n}\mathbf{U}_n$$

لدينا من أجل كل عدد طبيعي $1 \geq n \geq 1$ و $n \geq 1$ ومنه إذن (\mathbf{U}_n) متتالية متناقصة . $\mathbf{U}_{n+1} - \mathbf{U}_n \leq \mathbf{0}$

بماأن (\mathbf{U}_n) متتالية متناقصة و محدودة من الأسفل بـ: 0 فهي متقاربة.

-تعيين نهاية المتتالية (U_n). بما أن المتتالية (\mathbf{U}_n) متقاربة والدالة f المعرفة بـ x=x مستمرة من أجل $\lim_{n\to+\infty}\frac{n+1}{2n}=\frac{1}{2}$ حيث $x\geq 1$ كل $x\geq 1$ ومنه $0=rac{1}{2}$ إذن $0=\ell$.

2) لتكن المتتالية (V_n) المعرفة كما يلي: $\operatorname{V}_n = \frac{\operatorname{U}_n}{n}$ عدد طبيعي غير

أ) إثبات أن (V_n) متتالية هندسية وتحديد أساسها و حدها الأول :

$$V_{n+1} = \frac{U_{n+1}}{n+1} = \frac{U_n}{2n} = \frac{1}{2}V_n$$

 $\mathrm{V}_1=rac{1}{2}$ إذن V_n متتالية هندسية أساسها $q=rac{1}{2}$ و حدها الأول

$$V_n = V_1 \times q^{n-1} = \frac{1}{2^n} : V_n$$
 ب) تعین عبارة

 $\mathbf{U}_n = rac{n}{2^n}$ اِذِن: $\mathbf{U}_n = n\mathbf{V}_n$ ومنه $\mathbf{V}_n = rac{\mathbf{U}_n}{n}$ اندن: \mathbf{U}_n تعین عبارة

4) نعتبر المتتالية العددية بدلالة (W_n) المعرفة من أجل كل عدد طبيعي n غير معدوم $W_n = \ln(V_n)$: ب

أ) برهان أن المتتالية (W_n) حسابية يطلب تعيين أساسها وحدها الأول

 $W_{n+1} - W_n = \ln(V_{n+1}) - \ln(V_n) = \ln\left(\frac{V_{n+1}}{V_n}\right) = -\ln 2 = r$

 $.W_1 = lnV_1 = -ln2$

 $\mathbf{S}_n = \mathbf{W}_1 + \mathbf{W}_2 + \dots + \mathbf{W}_n$: و \mathbf{P}_n و \mathbf{S}_n حساب بدلالة \mathbf{S}_n کل من \mathbf{S}_n . $P_n = \frac{U_1 \times U_2 \times \cdots \times U_n}{n!}$ و

عبارة عن مجموع حدود متتالية حسابية S_n

 $S_n = \frac{n}{2} (W_n + W_1) = \frac{n}{2} (-\ln 2 - (n-1)\ln 2 - \ln 2)$

 $S_n = -\frac{n \ln 2}{2} (n+1) : e^{-n \ln 2}$

 $\mathbf{P}_n = \frac{\mathbf{U}_1 \times \mathbf{U}_2 \times \dots \times \mathbf{U}_n}{1 \times 2 \times \dots \times n} = \frac{\mathbf{U}_1}{1} \times \frac{\mathbf{U}_2}{2} \times \dots \times \frac{\mathbf{U}_n}{n}$ لدينا: $P_n = V_1 \times V_2 \times \cdots \times V_n = \left(\frac{1}{2}\right)^{1+2+\ldots+n}$

. $P_n = \left(\frac{1}{2}\right)^{\frac{(n+1)(n)}{2}}$ ومنه

التمرين الرابع:

- . $g(x) = 1 x^2 (1 \ln(x))$:ب]0; + ∞ [المجال معرفة على المجال g(I
 - $\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x)$ (1)

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 1 - x^2 (1 - \ln(x)) = +\infty$$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} 1 - x^2 (1 - \ln(x)) = \lim_{x \to 0} 1 - x^2 + x^2 \ln(x) = 1$$

2) دراسة إتجاه تغير دالة
$$g$$
 : $0; +\infty$ قابلة للإشتقاق على $0; +\infty$ ودالتها المشتقة $0; +\infty$ حيث :

$$g'(x) = -2x(1 - \ln(x)) - x^2 \frac{-1}{x} = -2x + 2x \ln(x) + x = x(2\ln(x) - 1)$$

$$x=\mathrm{e}^{rac{1}{2}}$$
 تکافئ $\ln(x)=rac{1}{2}$ تکافئ $2\ln(x)-1=0$ تکافئ $g'(x)=0$ $x>0$

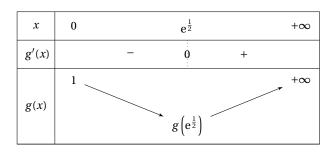
$$x>\mathrm{e}^{\frac{1}{2}}$$
 تكافئ $\ln(x)>\frac{1}{2}$ تكافئ $2\ln(x)-1>0$ تكافئ $g'(x)>0$

$$x < \mathrm{e}^{\frac{1}{2}}$$
تكافئ $\ln(x) < \frac{1}{2}$ تكافئ $2\ln(x) - 1 < 0$ تكافئ $g'(x) < 0$

إذن الدالة g متناقصة تماما على المجال $\left[e^{rac{1}{2}}
ight]$ و متزايدة تماما

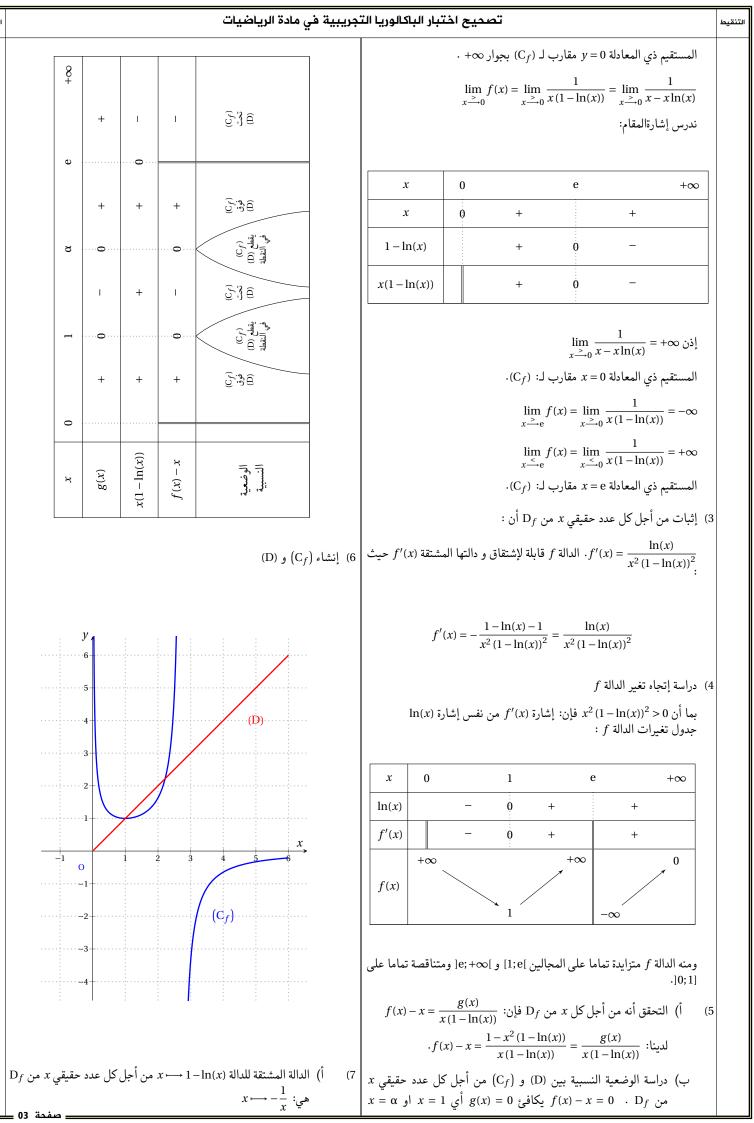
 $\left[e^{\frac{1}{2}};+\infty\right]$ على المجال

جدول تغيرات الدالة g



- : ميث المعادلة g(x)=0 تقبل حلين أحدهما 1 الآخر g(x)=0
- و لدينا الدالة g مستمرة و متناقصة تماما على المجال $[1,e^{rac{1}{2}}]$ (رتيبة) $[1,e^{rac{1}{2}}]$ و $[1,e^{rac{1}{2}}]$ و يا المجال إذن لا يوجد حلول في المجال $[1,e^{rac{1}{2}}]$.
- $g(\mathbf{e}) \times g\left(\mathbf{e}^{0.5}\right) < 0$ و نامجال $\left[\mathbf{e}^{\frac{1}{2}},\mathbf{e}\right]$ الدالة g مستمرة ومتزايدة تماما ، و g(x) = 0 إذن حسب مبرهنة القيم المتوسطة و شرط الرتابة المعادلة
 - $[\mathrm{e}^{rac{1}{2}},\mathrm{e}]$ تقبل حلا وحيدا $[\mathrm{e}^{rac{1}{2}},\mathrm{e}]$ نقبل حلا وحيدا
 - α الآخر المعادلة g(x)=0 تقبل حلين أحدهما الآخر g -يث : 1 < α < e.
 - g(x) إستنتاج إشارة (4
 - لدينا :

- $f(x) = \frac{1}{x(1 \ln(x))}$: دالة عددية معرفة بf (II
- . x=e او x=0 معناه x=0 معناه x=0 او x=0
- $x(1-\ln x) \neq 0$ معرفة من اجل كل عدد حقيقي x موجب تماما و f $D_f =]0; e[\cup] e; +\infty[$ يكافئ
 - 0 عند ∞ عند f عند عند $+\infty$ عند وعند (2
 - $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x(1 \ln(x))} = 0$



تصحيح اختبار الباكالوريا التجريبية في مادة الرياضيات $V_n = \frac{4^n}{2} = 2^{2n-1} : n$ ب کتابة V_n ثم V_n بدلالة (ب $P(D) = \frac{7}{15}$ من أجل أجل العدد الطبيعي n من أجل n=7 أو n=3 أو n=3 أو n=3 أو n=3 أو n=3 أو n=3 $\mathbf{U}_n = \sqrt{\frac{3\mathbf{V}_n}{1+\mathbf{V}_n}} = \sqrt{\frac{3\times 2^{2n-1}}{1+2^{2n-1}}}$ ومنه $-\mathbf{U}_n^2\mathbf{V}_n - \mathbf{U}_n^2 = -3\mathbf{V}_n$ 3) نضع من أجل كل عدد طبيعي n غير معدوم: التمرين الثالث : \mathbf{U}_n متتالية عددية معرفة على \mathbb{N} بـ: $\mathbf{U}_0=1$ ومن أجل . $\mathbf{U}_{n+1} = \dfrac{2\mathbf{U}_n}{\sqrt{\mathbf{U}_n^2 + 1}} \,:\, n$ کل عدد طبیعي $T_n = \frac{S_n}{r}$ $S_n = (U_1)^2 + (U_2)^2 + \dots + (U_{n-1})^2$ $S_{n+1} = S_n + (U_n)^2 :$ التحقق أن $S_{n+1} = (U_1)^2 + (U_2)^2 + \dots + (U_{n-1})^2 + (U_n)^2 = S_n + (U_n)^2$ $1 \leq U_n \leq \sqrt{3}: n$ نبرهن أنّه من أجل كل عدد طبيعى أ (1 $n \le S_n \le 3n$ غير معدوم: $n \le S_n \le 3n$ نبرهن بالتراجع أنه من أجل كل عدد طبيعي $1 \leq \mathbf{U}_n \leq \sqrt{3} \, : \, n$ نسمي الخاصية p(n) من أجل كل عدد طبيعي نسمى الخاصية p(n) من أجل كل عدد طبيعى n غير معدوم: p(0)من أجل n=0 لدينا n=0 عصيحة من أجل من أجل من الدينا $p(n): n \leq S_n \leq 3n$ $n \ge 0$: نفرض صحة p(n) من أجل n عدد طبيعي كيفي محققة. $p(1): 1 \le S_1 = U_1^2 = \sqrt{2} \le 3$:p(n+1) من أجل n عدد طبيعي كيفي $1 \ge n$ ونبرهن صحة p(n+1) $1 \le \mathbf{U}_{n+1} \le \sqrt{3}$ و نثبت صحة p(n+1) أي $p(n+1): n+1 \le S_{n+1} \le 3n+3$ نضع من أجل كل x عدد حقيقي من المجال $f(x) = \frac{2x}{\sqrt{x+1}}$: [0; +\infty] ومنه : لدينا من الفرض $S_n \leq S_n \leq n$ و مما سبق $S_n \leq 1$ ومنه بالجمع نجد محققة p(n+1) ومنه $n+1 \le S_n + U_n^2 \le 3n+3$ $[0;+\infty[$ الدالة f متزايدة تماما على المجال $f'(x) = \frac{x^2+1}{x^2+1} > 0$ $n \le S_n \le 3n$ غير معدوم: $n \le S_n \le 3n$ n نبیّن أنه من أجل كل عدد طبیعی n غیر معدوم: لدينا $U_n \le \sqrt{3}$ ومنه $nS_{n+1} - (n+1)S_n = nU_n^2 - S_n$ $f(1) \le U_n \le f(\sqrt{3})$ $nS_{n+1} - (n+1)S_n = nS_n + nU_n^2 - nS_n - S_n = nU_n^2 - S_n$ n اذن $u \leq U_{n+1} \leq 0$ اذن $u \leq U_{n+1} \leq 0$ صحيحة ،ومنه من أجل كل عدد طبيعي $u \leq 0$ $T_{n+1} - T_n$ حساب (ج $\mathsf{T}_{n+1} - \mathsf{T}_n = \frac{\mathsf{S}_{n+1}}{n+1} - \frac{\mathsf{S}_n}{n} = \frac{n\mathsf{S}_{n+1} - (n+1)\mathsf{S}_n}{n(n+1)}$ ب) نبيّن أن المتتالية (U_n) متزايدة. $=\frac{n\mathbf{U}_n^2-\mathbf{S}_n}{n(n+1)}$ $U_{n+1} - U_n = \frac{2U_n}{\sqrt{U_n^2 + 1}} - U_n = \frac{2U_n - U_n\sqrt{U_n^2 + 1}}{\sqrt{U_n^2 + 1}}$ استنتاج أن (T_n) متتالية متزايدة. $= \frac{U_n \left(2 - \sqrt{U_n^2 + 1}\right)}{\sqrt{U_n^2 + 1}}$. n(n+1) > 0 : $n \in \mathbb{N}^*$ من أجل كل نسمي الخاصية p(n) من أجل كل عدد طبيعي n غير معدوم: $p(n): nU_n^2 \ge S_n$ $\mathbf{U}_n > 0$: n لدينا من أجل كل عدد طبيعى من أجل n = 1 لدينا $U_1^2 \ge S_1 = U_1^1$ الخاصية محققة. $n \ge 1$ من أجل عدد طبيعي كيفي p(n) نفرض صحة ولدينا كذلك $2 \le -\sqrt{U_n^2+1} \le -\sqrt{2}$ ومنه $\sqrt{2} \le \sqrt{U_n^2+1} \le 2$ ومنه $p(n+1):(n+1)U_{n+1}^2 \ge S_{n+1}$ $0 \le 2 - \sqrt{U_n^2 + 1} \le 2 - \sqrt{2}$ $(n+1)U_{n+1}^2 \ge U_n^2 + S_n$ ومنه $S_{n+1} = U_n^2 + S_n$ لدينا مما سبق $p(n+1):(n+1)U_{n+1}^2-S_n+U_{n+1}^2-U_n^2\geq 0$ وبالتالى المتتالية (U_n) متزايدة. بما أن المتتالية (\mathbf{U}_n) متزايدة فإن من أجل كل عدد طبيعي غير معدوم: ج) بما أن المتتالية $({\rm U}_n)$ متزايدة ومحدودة من الأعلى بـ $\sqrt{3}$ فهي متقاربة. و من $(n+1)U_{n+1}^2 \geq nU_n^2$ و من $U_{n+1}^2 \geq U_n^2$ معناه $U_{n+1} \geq U_n > 0$ $(n+1)\mathrm{U}_{n+1}^2 \geq n\mathrm{U}_n^2 \geq \mathrm{S}_n$ الفرض $n\mathrm{U}_n^2 \geq \mathrm{S}_n$ یکافئ مما سبق الدالة f مستمرة ورتيبة على المجال] $\infty+$;0] والمتتالية (U_n) متقاربة $n\mathbf{U}_{n+1} - \mathbf{S}_n \ge 0$ إذن إذن نهايتها تحقق $f(\ell) = \ell$ يكافئ $(n+1)U_{n+1}^2 - S_n + U_{n+1}^2 - U_n^2 \ge 0$ نستنتج أن: ومنه $\ell=\sqrt{3}$ ومنه $\ell^2+1=4$ یکافئ $\ell^2=rac{4\ell^2}{\ell^2+1}$ مقبول أو $\ell=rac{2\ell}{\sqrt{\ell^2+1}}$ ومنه p(n+1) محققة وعليه وp(n+1) متزايدة. التمرين الرابع : . $V_n = \frac{(U_n)^2}{3 - (U_n)^2}$ کما یلي: \mathbb{N} کما یلی عددیة معرفة علی (V_n) (2 $g(x) = e^{-x} - x - 2$ بالدالة العددية g معرفة على \mathbb{R} : (C₂) بالنسبة إلى (C₁) بقراءة بيانية ، تحديد حسب قيم x من x من x من النسبة إلى (1 أ) نبين أنّ المتتالية (V_n) هندسية مع تعيين أساسها وحدها الأول. .(C2) في المجال $-\infty; \alpha$ [: (C1) يقع فوق $V_{n+1} = \frac{(U_{n+1})^2}{3 - (U_{n+1})^2} = \frac{\left(\frac{2U_n}{\sqrt{U_n^2 + 1}}\right)^2}{3 - \left(\frac{2U_n}{\sqrt{U_n^2 + 1}}\right)^2}$ \cdot (C1) في المجال $\alpha;+\infty$ المجال (C2) في المجال $x = \alpha$ عند (C₂) يتقاطعان (C₁) . g(x) إستنتاج حسب قيم x إشارة (2 $=\frac{\frac{4U_n^2}{U_n^2+1}}{3-\frac{4U_n^2}{U_n^2+1}}=\frac{4U_n^2}{-U_n^2+3}=4V_n$ $-\infty$ g(x)

 $g(-0.5) \times g(-0.4) < 0 \,:\, -0.5 < \alpha < -0.4$ (3) التحقق أنّ

دالة معرفة على : \mathbb{R} بناني $f(\mathbf{C}_f)$ دالة معرفة على : \mathbb{R} بناني $f(\mathbf{H}_f)$ دالة معرفة على : في المستوي المنسوب إلى المعلم المتعامد و المتجانس $\left(0;\,\overrightarrow{i}\,,\,\overrightarrow{j}\right)$. وحدة الطول 1cm

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x + 1 + \frac{x}{e^x} - \frac{1}{e^x} = -\infty \quad \text{(i)}$$

$$\cdot \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-xe^x + e^x + x - 1}{e^x} = -\infty$$

$$f'(x) = -rac{g(-x)}{\mathrm{e}^x}: x$$
 نبين أنّه من أجل كل عدد حقيقي x : الدالة f قابلة للإشتقاق على \mathbb{R} :

$$f'(x) = -1 + \frac{e^x - (x-1)e^x}{e^{2x}} = -1 + \frac{e^x (2-x)}{e^{2x}}$$
$$= \frac{-e^x + 2 - x}{e^x} = -\frac{e^x + x - 2}{e^x} = -\frac{g(-x)}{e^x}$$

ج) دراسة إتجاه تغير الدالة $e^x>0$: f الإشارة من إشارة -g(-x) من أجل كل عدد

x	0		-α		+∞
-g(-x)		+	0	_	
f'(x)		+	0	-	

 $-[-\alpha;+\infty]$ الدالة f متزايدة تماما على المجال $-\infty;-\alpha$ المجال المجال جدول التغيرات:

x	0		$-\alpha$		+∞
f'(x)		+	0	_	
f(x)	-∞	/	$f(-\alpha)$		$-\infty$

 $:\mathscr{M}:\mathrm{cm}^2$ حساب (C_f) عند (C_f) مقارب مائل للمنحنى (y=-x+1) خساب (أ) نبين أن المستقيم (y=-x+1) خوالد المعادلة (y=-x+1)

$$\lim_{x \to +\infty} f(x) + x - 1 = \lim_{x \to +\infty} \frac{x}{e^x} - \frac{1}{e^x} = 0 : +\infty$$

ب) دراسة وضعية (C_f) بالنسبة للمستقيم (D)

ياذن:
$$x = 1$$
 معناه $f(x) + x - 1 = 0$ ومنه $e^x > 0$ معناه $f(x) + x - 1 = \frac{x - 1}{e^x}$

x	-∞	1	+∞
$\frac{x-1}{e^x}$		- 0 +	
الوضعية		(C _f) (C _f) (C _f) نحت (C _f) (C _f) فوق (D) يقطع (D) في التقطة (1;0)	

$$f(-\alpha) = \alpha + \frac{1}{\alpha + 2}$$
: نبين أنّ (3

$$f(-\alpha) = +\alpha + 1 + \frac{-\alpha - 1}{e^{-\alpha}}$$

$$= \alpha + 1 + \frac{-(\alpha + 1)}{\alpha + 2} \quad g(\alpha) = 0$$

$$= \alpha + 1 + \frac{-(\alpha + 2) + 1}{\alpha + 2} = \alpha + 1 - 1 + \frac{1}{\alpha + 2}$$

$$= \alpha + \frac{1}{\alpha + 2}$$

$$f(-\alpha)$$
 حص

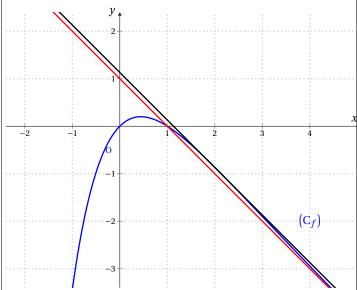
لدينا
$$\frac{1}{1.6} < \frac{1}{2+\alpha} < \frac{1}{1.5}$$
 ومنه $0.5 < \alpha < -0.4$ بالجمع نجد $-0.5 + \frac{1}{1.6} < \frac{1}{2+\alpha} < -0.4 + \frac{1}{1.5}$

$$-1$$
 تبيين أنّ المنحنى (C_f) يقبل مماسًا (T) معامل توجيهه (4

$$e^{x} + 2 - x + e^{x} = 0$$
یکافئ $f'(x) = -1$ ومنه $e^{x} + 2 - x + e^{x} = 0$ اُی $e^{x} + 2 - x + e^{x} = 0$ ومنه $x = 2$

. (T) :
$$y = -(x-2) - 1 + e^{-2} = -x + 1 + e^{-2}$$
 : معادلته

.(T) و (D) ،
$$(C_f)$$
 و (5).



- y=-x+2m مع المستقيم ذو المعادلة (C_f) مع المستقيم ذو المعادلة (6
 - يوجد حل وحيد. $m \in]-\infty; \frac{1}{2}$ يوجد حل وحيد. $m \in]-\infty; \frac{1}{2}$
 - أي $\frac{1}{2} < m < \frac{1+\mathrm{e}^{-2}}{2}$ يوجد حلان ا $2m < 1 + \mathrm{e}^{-2}$
 - . لا يوجد حلول $m > \frac{1+e^{-2}}{2}$ لا يوجد حلول $m > 1 + e^{-2}$

$$\mathscr{A} = \int_{0}^{1} [f(x) + x - 1] dx = -\int_{0}^{1} (x - 1) e^{-x} dx$$
$$V'(x) = e^{-x} \quad V(x) = -e^{-x}$$

$$U(x) = x - 1$$
 $U'(x) = 1$

$$[(x-1)e^{-x}]_0^1 - \int_0^1 e^{-x} dx = 1 - [-e^{-x}]_0^1 = 1 + e^{-1} - 1 = e^{-1} \text{ cm}^2$$