اختبار في مادة الرياضيات (الثلاثي الثاني)

التمرين الأول: (5ن)

7) أدرس حسب قيم العدد الطبيعي n بواقى قسمة كل من 2^{3n} و 4^n على 7

 $4^{1438} - 2^{9n} - 25^{117} + 2007 \equiv 0$ [7] : أن عدد طبيعي n أن ين من أجل كل عدد طبيعي (2

 $0 \le n \le 12$ و $4^{1438} + 2007 + n \equiv 0$ [7] عين قيم العدد الطبيعي n حيث : (3

التمرين الثاني: (7ن)

لكل سؤال إجابة واحدة فقط صحيحة حددها مع التبرير

$$-\frac{\pi}{2}$$
 (ج $\frac{-3\pi}{10}$ (ب $\frac{\pi}{5}$ (أ : هي $Z = -\sqrt{2} i \left(\cos\frac{\pi}{5} + \sin\frac{\pi}{5}\right)$ عمدة العدد المركب (1

$$1+i$$
 (ج ن ما المعادلة $Z = \frac{6-Z}{3-Z}$ هو : على المعادلة $Z = \frac{6-Z}{3-Z}$ على المعادلة المعادلة المعادلة على المعادلة المعاد

(3) مجموعة النقط (x; y) هو المستقيم ذو المعادلة : |Z - 1 + i| = |Z + 2| هو المستقيم ذو المعادلة :

$$y = x - 1$$
 ($y = 3x + 1$ ($y = 2x$ ()

بساوي: n عدد طبيعي ،العدد n عدد $(2+i\sqrt{12})^n$ عدد طبيعي ،العدد n

أ)
$$3K + 6$$
 (عدد طبيعي) ، $3K + 6$

6) التحويل النقطي المعرف بـ : $\dot{z} = z - 1$ (حيث \dot{z} صورة عن النقطي المعرف بـ : $\dot{z} = z - 1$ (حيث غ

التمرين الثالث: (8ن)

(p) أ- تحقق أن النقطة B تنتمي للمستوي (1

(p) ب- أثبت أن $\vec{n}(2\cdot 1\cdot -1)$ شعاع ناظمي المستوي ب-

B أ- أكتب تمثيلا وسيطيا للمستقيم (Δ) العمودي على المستوي (p) في النقطة (2

 (Δ) من A من

(p) نقطة كيفية من المستوي M

 λ و α أثبت بطريقتين الجداء \overrightarrow{AM} . \overrightarrow{AB} مستقل عن الوسيطين

 $(\overrightarrow{MO} + \overrightarrow{MA} + \overrightarrow{MB}).(\overrightarrow{MA} - \overrightarrow{MB}) = 0$ مجموعة النقط M من الفضاء التي تحقق: (E) (4) مركز ثقل المثلث (E) ، بين أن (E) تنتمى إلى المجموعة (E) ثم عين (E)

مهاوات يتمنى لكم النجاح