المؤسسة: الإخوة عزوزي

شعبة: ثالثة علوم تجريبية 1+2 المدة: 10800 ثانية

الامتحان الثاني في مادة الرياضيات

التمرين الأول:

 $\|\overrightarrow{i}\| = 2cm$ $(O, \overrightarrow{i}, \overrightarrow{j})$ المستوي منسوب إلى معلم متعامد ومتجانس

 $(Z+2i)(Z^2-2\sqrt{3}\,Z+4)=0$: المعادلة ذات المجهول التالية Z=0 : المعادلة ذات المجهول التالية Z=0

 $Z_C=-(Z_A+Z_B)$, $Z_B=-\overline{Z_A}$, $Z_A=2e^{i(rac{\pi}{6})}$: فط في المستوى مع C,B,A

اكتب Z_B ، ثم على الشكل الأسي الشكل الأسي الشكل الأسي

استنتج $\left(\frac{z_A}{z_B}\right)^{2016}$ حقيقي مين أن العدد z_B حقيقي .

 $z_B - z_C$

ABC على الشكل الأسي ثم استنتج طبيعة المثلث كا

 $|iz-2|=|z-z_A|$ عين و انشئ (T) مجموعة النقط M ذات اللاحقة z حيث : أ_

التمرين الثاني: 4ن

 $\ln\left(u_1\right) + \ln\left(u_5\right) = -12$ و $\ln\left(u_2\right) - \ln\left(u_4\right) = 4$: نعتبر المتتالية $\left(U_n\right)$ الهندسية حدودها موجبة حيث

 u_0 بين أن أساس المتتالية (U_n) هو $q=\frac{1}{e^2}$ ثم عين حدها الأول

n اكتب عبارة U_n بدلالة

 $S_n = U_0 + U_1 + U_2 + \dots + U_n$ أ-احسب المجموع

 $V_n = \ln u_n + \ln u_{n+1}$: المعرفة من اجل كل عدد طبيعي nب التكن المتتالية (V_n) المعرفة من اجل

بين أن $^{(V_n)}$ متتالية حسابية يطلب تعين أساسها.

 $S'_{n} = V_{0} + V_{1} + V_{2} + \dots + V_{n}$ حيث: $S'_{n} = V_{0} + V_{1} + V_{2} + \dots + V_{n}$

 $S_n' = 2^{30}$ عين قيمة n عين قيمة

اقلب الصفحة

التمرين الثالث:

كيس يحتوي على 8 كرات منها 4 كرات حمراء و 3 كرات خضراء و كرة واحدة بيضاء ، نسحب عشوائيا وفي آن واحد 3 كرات من الكيس .

1-أً-أحسب عدد الحالات الممكنة .

ب-احسب الاحتمالات التالية:

A- 3 كرات من نفس اللون .

-B كرة على الأقل حمراء -B

- كرتين على الأكثر حمراء.

 $_{x}$ المتغير العشوائي الذي يرفق عدد الألوان المحصل عليها $_{x}$

أ-ماهي قيم 🗶 ?

P(x=2): واستنتج P(x=3) ، P(x=1) واستنتج P(x=3) . P(x=1) واستنج P(x=1) . P(x=1) . التباين ثم الانحراف المعياري

التمرين الثالث:

 $g(x) = x^2 - 1 + \ln x^2$ بين $]-\infty;0[\,\cup\,]0;+\infty[$ على (I)

°1) أدرس تغيرات الدالة 8 ثم شكل جدول تغيراتها

 $]-\infty;0[\,\cup\,]0;+\infty[$ على g(x) على g(-1) و g(1) على g(1) على g(1) على g(1)

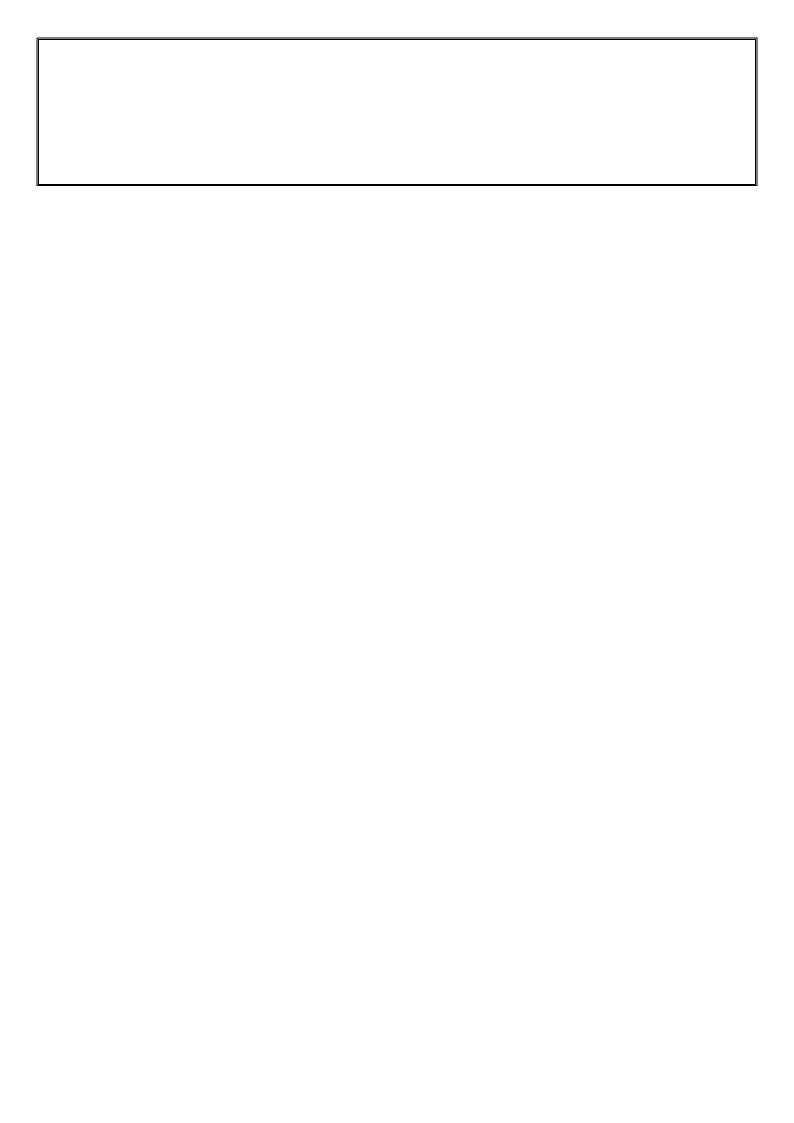
و ليكن (C_f) التمثيل البياني $f(x) = -x + 1 + \frac{1 + \ln x^2}{x}$ يا الدالة المعرفة على (C_f) التمثيل البياني (C_f) التمثيل البياني الدالة (C_f) التمثيل البياني الدالة (C_f) في معلم متعامد و متجانس $(O;\vec{i},\vec{j})$

. أحسب نهايات f على حدود مجال تعريفها $^{\circ}1$

 $f'(x) = \frac{-g(x)}{x^2}$: $]-\infty;0[\cup]0;+\infty[$ من أجل كل x من أجل كل x من أجل (°2)

f ثم شكل جدول تغيرات الدالة f'(x) ثم شكل جدول تغيرات الدالة (°3

(°4) أ) بين أن المنحنى $\binom{C_f}{}$ يقبل مستقيم مقارب مائل $\binom{\Delta}{}$ يطلب لعيين معادلة له $\binom{\Delta}{}$ أدرس وضعية المنحنى $\binom{C_f}{}$ بالنسبة للمستقيم


. بين أن المنحنى $\binom{C_f}{2}$ يقبل مماسين $\binom{T_2}{T_1}$ يوازيان $\binom{\Delta}{2}$ يطلب تعيين معادلة كل منهما $\binom{\circ}{5}$

 $\frac{1}{2} < \alpha < 1$ و $2 < \beta < \frac{5}{2}$ و α حیث: f(x) = 0 و α بین أن المعادلة f(x) = 0 تقبل حلین α و α

 $\left(C_{f}
ight)$ و $\left(\Delta\right)$, $\left(T_{2}
ight);\left(T_{1}
ight)$ و °7

 $\frac{1+\ln x^2}{x}=m-1$ وسيط حقيقي ، ناقش بيانيا حسب قيم m عدد حلول المعادلة: m (°8)

النجاح يحققه فقط الذين يواصلون المحاولة بنظرة إيجابية للأشياء

